Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Эффект Джоуля — Томсона



Если идеальный газ адиабатически рас­ширяется и совершает при этом работу, то он охлаждается, так как работа в данном случае совершается за счет его внутрен­ней энергии (см. § 55). Подобный процесс, но с реальным газом — адиабатическое расширение реального газа с совершением внешними силами положительной рабо­ты — осуществили английские физики Дж. Джоуль (1818—1889) и У. Томсон (лорд Кельвин, 1824—1907).

Рассмотрим эффект Джоуля — Томсо­на. На рис. 93 представлена схема их опыта. В теплоизолированной трубке с по­ристой перегородкой находится два пор­шня, которые могут перемещаться без трения. Пусть сначала слева от перего­родки газ под поршнем 1 находится под давлением р1, занимает объем V1при тем­пературе Т1, а справа газ отсутствует (по-

 

 

ршень 2 придвинут к перегородке). После прохождения газа через пористую перего­родку в правой части газ характеризуется параметрами р2, V2, Т2. Давления р1и р2 поддерживаются постоянными (р1>р2).

Так как расширение газа происходит без теплообмена с окружающей средой (адиабатически), то на основании первого начала термодинамики

dQ=(U2-U1)+dA=0. (64.1)

Внешняя работа, совершаемая газом, со­стоит из положительной работы при дви­жении поршня 2 (A2=p2V2) и отрицатель­ной при движении поршня 1 (A1=p1V1), т.е. dA=A2-А1. Подставляя выраже­ния для работ в формулу (64.1), полу­чим

U1+p1V1=U2+p2V2. (64.2)

Таким образом, в опыте Джоуля — Томсона сохраняется (остается неизменной) ве­личина U+pV. Она является функцией состояния и называется энтальпией.

Ради простоты рассмотрим 1 моль га­за. Подставив в формулу (64.2) выраже­ние (63.3) и рассчитанные из уравнения Ван-дер-Ваальса (61.2) значения p1V1 и p2V2(символ «m» опять опускаем) и производя элементарные преобразова­ния, получим

Из выражения (64.3) следует, что знак разности (T2-T1) зависит от того, какая из поправок Ван-дер-Ваальса играет боль­шую роль. Проанализируем данное выражение, сделав допущение, что p2<<p1

и V2>>V1:

1) a»0— не учитываем силы притя­жения между молекулами, а учитываем лишь размеры самих молекул. Тогда

т. е. газ в данном случае нагревается;

2) b»0 - не учитываем размеров мо­лекул, а учитываем лишь силы притяже­ния между молекулами. Тогда

т. е. газ в данном случае охлаждается;

3) учитываем обе поправки. Подставив в выражение (64.3) вычисленное из урав­нения Ван-дер-Ваальса (61.2) значение p1, имеем

т. е. знак разности температур зависит от значений начального объема V1и началь­ной температуры Т1.

Изменение температуры реального га­за в результате его адиабатического рас­ширения, или, как говорят, адиабатиче­ского дросселирования— медленного про­хождения газа под действием перепада давления сквозь дроссель(например, по­ристую перегородку), называется эффек­том Джоуля — Томсона.Эффект Джоу­ля — Томсона принято называть положи­тельным,если газ в процессе дросселиро­вания охлаждается (DT<0), и отрица­тельным,если газ нагревается (DT>0).

В зависимости от условий дросселиро­вания для одного и того же газа эффект Джоуля — Томсона может быть как поло­жительным, так и отрицательным. Темпе­ратура, при которой (для данного давле­ния) происходит изменение знака эффек­та Джоуля — Томсона, называется температурой инверсии.

Ее зависимость от объема получим, приравняв выражение (64.4) нулю:

Кривая, определяемая уравнением (64.5),— кривая инверсии— приведена на рис. 94. Область выше этой кривой со­ответствует отрицательному эффекту Джоуля — Томсона, ниже — положитель­ному. Отметим, что при больших перепа­дах давления на дросселе температура газа изменяется значительно. Так, при дросселировании от 20 до 0,1 МПа и на­чальной температуре 17 °С воздух охлаж­дается на 35 °С.

Эффект Джоуля — Томсона обуслов­лен отклонением газа от идеальности. В самом деле, для моля идеального газа pVm = RT, поэтому выражение (64.2) при­мет вид

CVT1+RT1=CVT2 + RT2, откуда следует, что T1=T2

Сжижение газов

Превращение любого газа в жидкость — сжижение газа— возможно лишь при температуре ниже критической (см. §62). При ранних попытках сжижения газов оказалось, что некоторые газы (Сl2, СО2, NН3) легко сжижались изотермическим сжатием, а целый ряд газов (О2, n2, Н2, Не) сжижению не поддавался. Подобные неудачные попытки объяснил Д. И. Мен­делеев, показавший, что сжижение этих газов производилось при температуре, большей критической, и поэтому заранее было обречено на неудачу. Впоследствии удалось получить жидкий кислород, азот и водород (их критические температуры равны соответственно 154,4, 126,1 и 33 К), а в 1908 г. нидерландский физик Г. Камерлинг-Оннес (1853—1926) добился сжижения гелия, имеющего самую низкую критическую температуру (5,3 К).

 

Для сжижения газов чаще применяют­ся два промышленных метода, в основе которых используется либо эффект Джоу­ля — Томсона, либо охлаждение газа при совершении им работы.

Схема одной из установок, в которой используется эффект Джоуля Томсона,— машины Линде— представлена на рис. 95. Воздух в компрессоре (К) сжима­ется до давления в десятки мегапаскаль и охлаждается в холодильнике (X) до температуры ниже температуры инверсии, в результате чего при дальнейшем расши­рении газа наблюдается положительный эффект Джоуля — Томсона (охлаждение газа при его расширении). Затем сжатый воздух проходит по внутренней трубе теп­лообменника (ТО) и пропускается через дроссель (Др), при этом он сильно расши­ряется и охлаждается. Расширившийся воздух вновь засасывается по внешней трубе теплообменника, охлаждая вторую порцию сжатого воздуха, текущего по внутренней трубе. Так как каждая следую­щая порция воздуха предварительно ох­лаждается, а затем пропускается через дроссель, то температура понижается все больше. В результате 6—8-часового цикла часть воздуха (»5%), охлаждаясь до температуры ниже критической, сжижает­ся и поступает в дьюаровский сосуд (ДС) (см. §49), а остальная его часть возвра­щается в теплообменник.

Второй метод сжижения газов основан

 

на охлаждении газа при совершении им работы. Сжатый газ, поступая в поршне­вую машину (детандер),расширяется и совершает при этом работу по передви­жению поршня. Так как работа соверша­ется за счет внутренней энергии газа, то его температура при этом понижается.

Академик П. Л. Капица предложил вместо детандера применять турбодетандер,в котором газ, сжатый всего лишь до 500—600 кПа, охлаждается, совершая ра­боту по вращению турбины. Этот метод успешно применен Капицей для сжижения гелия, предварительное охлаждение кото­рого производилось жидким азотом. Со­временные мощные холодильные установ­ки работают по принципу турбодетандера.