Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Связь между тензорами напряжений и деформаций. Обобщенный закон Гука



Зависимости между напряжениями и деформациями носят физический характер. Ограничиваясь малыми деформациями, связь между напряжениями и деформациями можно считать линейной.

При испытании стержня на растяжение (о механических испытаниях материалов будет подробно рассказано в следующем разделе) установлена пропорциональная зависимость между нормальным напряжением и линейной деформацией в одном направлении, которая называется законом Гука:

(3.12)

где упругая постоянная называется модулем продольной упругости.

Тем же экспериментальным путем установлена связь между линейными деформациями в продольном и поперечном направлениях:

(3.13)

где — линейная деформация в поперечном направлении, — вторая упругая постоянная, называемая коэффициентом Пуассона.

При механических испытаниях на чистый сдвиг установлена прямо пропорциональная зависимость между касательным напряжением и угловой деформацией в плоскости действия этого напряжения, которая получила название закона Гука при сдвиге:

(3.14)

где величина является третьей упругой постоянной и называется модулем сдвига. Однако эта упругая постоянная не является независимой, т.к. связана с первыми двумя зависимостью

(3.15)

Чтобы установить зависимости между деформациями и напряжениями, выделим из тела бесконечно малый параллелепипед (рис.3.1) и рассмотрим действие только нормальных напряжений Разницей напряжений на противоположных гранях параллелепипеда можно пренебречь, т.к. она приводит к деформациям более высокого порядка малости.

Определим удлинение ребра параллельного напряжению При действии этого напряжения согласно закону Гука (3.12) произойдет относительное удлинение ребра

Напряжение вызывает аналогичное удлинение в направлении, перпендикулярном ребру

а в направлении ребра — укорочение, которое согласно (3.13) составляет

или, с учетом выражения деформации

Аналогично определяется относительное укорочение ребра при действии напряжения

На основании принципа независимости действия сил полное относительное удлинение ребра можно определить как сумму удлинений от действия каждого напряжения:

или

Аналогично можно определить линейные деформации по направлениям двух других осей:

 

В соответствии с законом Гука при сдвиге (3.14) связь между угловыми деформациями и касательными напряжениями можно представить независимо для каждой из трех плоскостей, параллельных координатным плоскостям:

Таким образом, получены шесть формул, которые выражают линейную зависимость между составляющими деформации и напряжений в изотропном упругом теле и называются обобщенным законом Гука:

(3.16)

 

НАЗАД НА ОГЛАВЛЕНИЕ