Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Уравнение Бернулли



В некоторых задачах о движении жидкости в приближении рассматривается идеальная (невязкая) жидкость.

Уравнение Бернулли для потока идеальной жидкостипредставляет закон сохранения энергии жидкости вдоль потока: вдоль элементарной струйки идеальной жидкости сумма потенциальной и кинетической энергии является постоянной величиной, т.е.

, (5.1)

где Н - полный гидродинамический напор (полная удельная энергия жидкости в сечении); Z – вертикальная координата центров тяжести сечений (геометрический напор); – пьезометрический напор (удельная энергия давления); /2g – скоростной напор (удельная кинетическая энергия), сумма представляет собой потенциальную энергию.

В реальных жидкостях проявляется влияние сил внутреннего трения, обусловленных вязкостью, на преодоление которых расходуется определенное количество кинетической энергии или скоростного напора h.

Уравнение Бернулли для двух сечений потока реальной жидкости записывается в следующем виде

(5.2)

где υ - средняя по сечению скорость; α – коэффициент Кориолиса, учитывающий неравномерность распределения скоростей по сечениям (при турбулентном режиме движения жидкости α=1, при ламинарном - α=2).

Член выражает потери напора на преодоление различных сопротивлений на пути движения жидкости между рассматриваемыми сечениями потока:

1) Сопротивления по всей длине потока жидкости, вызванное силами трения частичек жидкости между соседними слоями жидкости и трением о стенки, ограничивающие поток.

Потери напора называют линейными - .

2) Сопротивления, обусловленные местными препятствиями, встречающимися на пути движения (изменение формы и размеров русла). Они ведут к изменению величины и направления скорости.

Потери напора называют местными - .

Таким образом, гидродинамический напор в первом сечении всегда больше гидродинамического напора во втором сечении на величину потерь .