Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Способ треугольников (триангуляции)



Этот способ применяется для построения развертки пирамидальных поверхностей. Сущность его: последовательное совмещение всех граней пирамиды (грани представляют собой треугольники) с плоскостью.

Пример: Построить развертку боковой поверхности пирамиды SABC.

Развертка боковой поверхности пирамиды представляет собой плоскую фигуру, состоящую из треугольников - граней пирамиды. Поэтому построение развертки поверхности пирамиды сводится к определению действительной величины ребер пирамиды и построению по трем сторонам треугольников - граней пирамиды (Рис.11.1.).

Рис.10.1.
Определение дейст-вительной длины ребер пирамиды выполнено с помощью вращения их вокруг оси i (iÉS и i ^ H). Путем вращения реб-ра пирамиды совме-щаются с плоскостью b (плоскость b||V и bÉi). После того, как будут определены действительные вели-чины ребер [S¢¢A2], [S¢¢B2], [S¢¢C2], прис-тупают к построению развертки. Дня этого из произвольной точ-ки So проводят произ-вольную прямую а. Откладывают на ней от точки S0 [SoAo]@[S¢¢A2]. Из точ-ки ао проводят дугу радиусом r1= |А¢В¢½, а из точки So - радиусом ri =½S¢¢B2½. Пересе-чение дуг укажет по-ложение вершины Во треугольника S0A0B0 (треугольник SoAoBo = треугольник SAB - грани пирамиды). Аналогично находятся точки So и ао. Соединив точки AoBoCoA0So, получим развертку поверхности пирамиды SABC.