Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Электрические цепи, в которых одна часть сопротивлений соединена последовательно, а другая параллельно, называются цепями со смешанным соединением сопротивлений.

 

Общих расчетных формул для таких цепей нет, так как число их разновидностей не ограничено.

Чаще всего расчет подобных схем начинается с определения эквивалентного сопротивления всей цепи, а затем определяются величины токов и падение напряжения на отдельных участках.

Для определения эквивалентного сопротивления цепи со смешанным соединением потребителей, питающихся от одного источника тока, необходимо прежде всего разбить эту цепь на отдельные участки, состоящие из последовательного и параллельно соединенных сопротивлений. Далее определяют эквивалентные сопротивления для каждого из участков, а затем и для всей цепи в целом.

Рассмотрим метод решения задач на смешанное соединение сопротивлений на конкретном примере.

 

На рисунке представлена схема смешанного соединения сопротивлений. Ее можно разбить на три участка:

участок АВ - с двумя параллельно соединенными ветвями;

участок ВС - с последовательно соединенными сопротивлениями;

участок СD - с тремя параллельными ветвями.

 

Кроме того, нижняя ветвь участка АВ представляет в свою очередь цепь, состоящую из двух последовательно соединенных сопротивлений R2 и R3.

 

Центральная ветвь участка СD представляет собой смешанное соединение сопротивлений.

 

Расчет данной сложной цепи надо начинать с определения Rэкв для нижней ветви участка АВ и центральной ветви участка СD.

Теперь мы можем упростить первоначальную схему. Она будет иметь следующий вид

Определим эквивалентные сопротивления каждого из участков:

 

После этих вычислений можно продолжить упрощение схемы

 

Полученная упрощенная схема, состоящая в данном случае из трех последовательно соединенных сопротивлений, называется по отношению к реальной эквивалентной схемой.

Определим Rэкв всей цепи как сумму трех последних сопротивлений

 

Зная напряжение источника тока, применяя формулу закона Ома, определим ток в не разветвленном участке смешанной цепи

 

Определив величину тока, найдем падение напряжения на участках эквивалентной схемы АВ, ВС, CD:

 

Теперь можно определить токи в параллельных ветвях участков АВ и СD

Остается определить величину токов, протекающих через сопротивления R7 и R8. Для этого надо сначала определить падение напряжения на сопротивлениях R7 и R8.

Определим падение напряжения на сопротивлении R9:

Падение напряжения на сопротивлении R7,8 определится как разность UCD и U:

Теперь определим величины токов, протекающих через сопротивления R7 и R8:

Величина тока. протекающего через сопротивления R4 и R5, равна I - току в неразветвленном участке цепи.

Итак, при решении задач на смешанное соединение сопротивлений необходимо, постепенно упрощая схему, определить эквивалентное сопротивление всей цепи, а затем. восстанавливая постепенно реальную схему. вычислить падение напряжения и токи в отдельных ветвях.