Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Теорема умножения вероятностей.



Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого, т.е.

(10) для двух зависимых событий;

Для нескольких попарно зависимых событий А12,…Аn:

(11)

 

Для независимых событий теорема умножения вероятностей согласно (9) представлена формулой

(12) .

Пример:

В ящике имеется 10 электрических лампочек из которых 3 неисправны. На удачу одну за другой вынимают 2 лампочки.

А) какова вероятность, что обе исправны.

Б) какова вероятность, что обе неисправны.

В) какова вероятность, что одна из двух исправна.

Г) какова вероятность, что хотя бы одна исправна.

Решение: Обозначим события М-1я-исправна; К-2я-исправна

События М и К зависимые (т.е. вероятность события К меняется от того, произошло событие М или нет)

А)

Б)

В) "первая хорошая, вторая плохая илипервая плохая, вторая хорошая"

Г) "хотя бы одна исправна, т.е. одна или больше ( ≥ 1), первая исправна или вторая исправна

Замечание: Если вопрос задачи звучит как "хотя бы", то часто удобнее перейти к противоположному событию, т.е. "хотя бы одна исправная = 1 – Р (обе неисправны)"

Пример:

Бросаем 2 монеты. Событие А – 2 герба, событие В – 2 решки, событие С – 1 герб и 1 решка. Являются ли равновозможными события? Результаты для каждой из монет независимы.

Решение:

А)

Б)

В) "герб и решка или решка и герб"

Формула полной вероятности и формула Байеса.

Пример:

Однотипная продукция выпускается 3-мя цехами, производительности которых относятся как 1:3:2. Вероятность брака в каждом цехе составляет соответственно 1, 2 и 3%. Все изделия хранятся на одном складе. Наудачу одно изделие выбирается на складе. Какова вероятность, что оно браковано.

Решение:

I – A1 составляют полную группу

II – A2

III – A3

E – бракованное изделие

Пусть событие Е может произойти с любым из событий A1, A2, и т.д., образующих полную группу. Тогда полная вероятность события Е определяется формулой:

(12)

Пусть в условиях предыдущего примера известно, что наудачу взятое изделие оказалось бракованным.

А) какова вероятность, что оно было сделано в первом цеху.

Б) если известно, что изделие браковано, в каком цеху вероятнее всего было сделано.

Ответ на поставленный вопрос (переоценка гипотез при дополнении информации) дают формулы Байеса.

(13)

Доказательство:

Выражая неизвестную величину через известные, получаем формулу 13, что и требовалось доказать.

С помощью формулы 13 отвечаем на вопрос задачи.

Значит, вероятнее всего бракованное изделие будет сделано впервом или втором цеху.