Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Числовые характеристики суммы и среднего арифметического случайных величин.



Пусть заданы n независимых случайных величин X1, Х2, …, Хn имеющих математические ожидания a1, a2, …, an и дисперсии σ2, σ2,…, σ2. рассмотрим

случайную величину Y, равную их сумме (Y = X1 + Х2 + …+ Хn) и случайную величину Z, равную их среднему арифметическому

 

тогда математическое ожидание их суммы равно сумме их математических ожиданий

(1)

дисперсия суммы равна

(2)

математическое ожидание среднего арифметического равно

(3)

дисперсия среднего арифметического равна

(4)

Частные случаи: если a1 = a2 = …= an , т.е все математические ожидания одинаковы, то

(1а)

(3а)

Замечания:

1. Формулы 1-4 следуют из свойств математического ожидания и дисперсии.

2. из формулы 4 следует, что дисперсия среднего арифметического случайных величин в n раз меньше, чем дисперсия каждого из слагаемых, поэтому для уменьшения ошибки рекомендуется использовать среднее арифметическое.