Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Эмпирическая функция распределения.

Пусть известно статистическое распределение частот количественного признака X. Введем обозначения:

mx- число наблюдений, при которых наблюдалось значение признака, меньшеех; п- общее число наблюдений (объем выборки). Ясно, что относительная частота события Х < х равна. mx/n. Если х изменяется, то изменяется и относительная частота, т. е. относительная частота есть функция от х. Так как эта функция находится эмпирическим (опытным) путем, то ее называют эмпирической.

Эмпирической функцией распределения (функцией распределения выборки) называют функцию определяющую для каждого значения х относительную частоту события Х < х, т.е.

В отличие от эмпирической функции распределения выборки функцию распределения F (х) генеральной совокупности называют теоретической функцией распределения. Различие между эмпирической и теоретической функциями состоит в том, что теоретическая функция F (х) определяет вероятность события Х < х, а эмпирическая функция определяет относительную частоту этого же события. Из теоремы Бернулли следует, что относительная частота события Х < х, т. е. эмпирическая функция стремится по вероятности к вероятности F (х) этого события. Отсюда следует целесообразность использования эмпирической функции распределения выборки для приближенного представления теоретической (интегральной) функции распределения генеральной совокупности.

Эмпирическая функция обладает всеми свойствами F(x):

1) ее значения принадлежат отрезку [0, 1];

2) неубывающая;

3) если хi -наименьшая варианта, то

если x k - наибольшая варианта, то

Итак, эмпирическая функция распределения выборки служит для оценки теоретической функции распределения генеральной совокупности.

Пример. Построить эмпирическую функцию по данному распределению выборки:

xi
mi

Объем выборки n = 12+ 18+ 30 =60. Хнаим= 2, значит при Х £ 2,

Х<6 наблюдалось 12 раз, следовательно, при Х< 6

.

Значение Х<10 наблюдалось 12+18= 30 раз, значит при Х<10

Так как хнаиб =10, то при Х ³ 10

Искомая эмпирическая функция имеет вид:

График строится так же, как и график интегральной функции распределения.

Если результаты наблюдений представлены в виде интервального вариационного ряда, то в качестве х принимают концы частичных интервалов и , пользуясь данным выше определением вычисляют значения эмпирической функции. Причем, при Х< хнач

,

а при Х ³ хкон

.

Для рассмотренного примера получим таблицу:

х 6,67 6,69 6,71 6,73 6,75 6,77 6,79 6,81 6,83 6,85
0,01 0,085 0,17 0,39 0,65 0,87 0,94 0,995

 

Так как таблица определяет функцию не полностью, то при изображении графика доопределяем функцию, соединяя точки графика, соответствующие концам интервалов, отрезками. График эмпирической функции для интервального вариационного ряда есть непрерывная линия.