Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Теорема о спектральном представлении случайного процесса.



 

детерминированных сигналов и случайных процессов широко используется их спектральное представление в виде спектральной плотности, которая базируется на преобразовании Фурье.

Если процесс имеет конечную энергию и квадратично интегрируем (а это нестационарный процесс), то для одной реализации процесса можно определить преобразование Фурье как случайную комплексную функцию частоты:

(1)

Однако она оказывается почти бесполезной для описания ансамбля. Выходом из этой ситуации является отбрасывание некоторых параметров спектра, а именно спектра фаз, и построении функции, характеризующей распределение энергии процесса по оси частот. Тогда согласно теореме Парсеваля энергия

(2)

Функция характеризует, таким образом, распределение энергии реализации по оси частот и называется спектральной плотностью реализации. Усреднив эту функцию по всем реализациям можно получить спектральную плотность процесса.

Перейдем теперь к стационарному в широком смысле центрированному случайному процессу , реализации которого с вероятностью 1 имеют бесконечную энергию и, следовательно, не имеют преобразования Фурье. Спектральная плотность такого процесса может быть найдена на основании теоремы Винера-Хинчина как преобразование Фурье от корреляционной функции:

(3)

Если существует прямое преобразование, то существует и обратное преобразование Фурье, которое по известной определяет :

(4)

Если полагать в формулах (3) и (4) соответственно и , имеем

(5)

 

(6)

Формула (6) с учетом (2) показывает, что дисперсия определяет полную энергию стационарного случайного процесса, которая равна площади под кривой спектральной плотности. Размерную величину можно трактовать как долю энергии, сосредоточенную в малом интервале частот от до . Если понимать под случайный (флуктуационный) ток или напряжение, то величина будет иметь размерность энергии [В2/Гц] = [В2с]. Поэтому иногда называют энергетическим спектром. В литературе часто можно встретить другую интерпретацию: – рассматривается как средняя мощность, выделяемая током или напряжением на сопротивлении 1 Ом. При этом величину называют спектром мощности случайного процесса.

Свойства спектральной плотности

· Энергетический спектр стационарного процесса (вещественного или комплексного) – неотрицательная величина:

. (7)

· Энергетический спектр вещественного стационарного в широком смысле случайного процесса есть действительная и четная функция частоты:

. (8)

· Корреляционная функция и энергетический спектр стационарного в широком смысле случайного процесса обладают всеми свойствами, характерными для пары взаимных преобразований Фурье. В частности, чем «шире» спектр тем «уже» корреляционная функция , и наоборот. Этот результат количественно выражается в виде принципа или соотношения неопределенности.