Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Электрический ток и магнитные поля

 

О том, что некоторые рыбы могут генерировать электрический ток, было известно еще древним грекам, хотя они и не знали, что то шоковое оцепенение, которое вызывали у рыбаков электрические скаты, было связано с действием электричества. Они полагали, что рыба выделяет из своих кровеносных сосудов какое-то ядовитое вещество, которое замораживает кровь любого, кто к ней прикоснется. Также издревле был известен электрический сом, обитающий в реках и озерах тропической Африки. В Египте его называют «ра-аш», что созвучно арабскому слову «pa-ад», означающему в переводе «гром». Начиная с XI столетия арабы используют его в народной медицине (своего рода электротерапия): они прикладывают живых сомов к различным частям тела для снятия всякого рода болей. Римляне подобным же образом использовали электрических скатов при лечении подагры и головной боли.

Эти рыбы, как и обитающие в Южной Америке электрические угри, обладают особыми органами, которые способны производить мощный электрический разряд. С помощью своего электрического органа, состоящего из видоизмененных мышечных волокон, электрический сом может производить разряд напряжением до 650 В. Сокращение обычных мышц начинается с небольших электрических разрядов, называемых потенциалами действия, которые распространяются по поверхности мышечного волокна точно так же, как рецепторный потенциал распространяется по рецептору. В процессе эволюции в электрическом органе рыб была утрачена способность мышц к сокращению, а потенциалы действия, напротив, очень сильно возросли. Волокна электрического органа не похожи на тонкие мышечные волокна, а напоминают пластины, расположенные наподобие элементов в аккумуляторной батарее. Как и в любой батарее, отдельные заряды пластин суммируются и производят один сильный разряд. Потенциал действия каждой пластины достигает всего лишь 0,1 В; однако в электрическом органе угря могут быть одновременно возбуждены тысячи таких пластин, и тогда производимый ими разряд достигает огромной силы.

Электрические рыбы, о которых мы только что говорили, используют мощный электрический разряд для оглушения жертвы. Вместе с тем есть рыбы, генерирующие гораздо более слабые токи — настолько слабые, что они не в состоянии обездвижить жертву; во многих случаях эти токи можно зарегистрировать лишь с помощью приборов. Почти у всех скатов электрические органы располагаются в области хвоста; электрический скат отличается от всех остальных тем, что производит особенно сильный разряд. К электрическим рыбам принадлежат также звездочет, обитающий у берегов Северной Америки, клюворылые рыбы Африки, например слонорыл, а также гимнотовидные рыбы, к которым относится ножетелка и электрический угорь, — обитатели Южной Америки. Биологическое значение слабых токов, производимых этими рыбами, долгое время оставалось загадкой; теперь предполагают, что рыбы могут воспринимать искажение образующегося вокруг их тел электрического поля и таким образом обнаруживать препятствия или добычу.

Уже более ста лет известно, что электрические органы есть у нильской щуки — рыбы необычного вида, вдоль всей спины которой проходит постоянно колеблющийся плавник. В 1951 году Г. У. Лиссман тщательно исследовал поведение этих рыб. Нильские щуки передвигаются не с помощью движений хвоста, как большинство других рыб, а с помощью волнообразно колышущегося спинного плавника. При этом их тело не изгибается из стороны в сторону. Эти рыбы с одинаковой легкостью могут двигаться как вперед, так и назад; они без труда обходят все препятствия, встречающиеся на их пути. Нильские щуки обитают в мутных илистых реках и по ночам охотятся на мелких рыбешек. В таких условиях от зрения мало пользы, и поэтому вполне естественно предположить, что какое-то другое чувство помогает нильской щуке ловить добычу и избегать препятствий.

По данным Лиссмана, нильская щука использует электрические органы для обнаружения различных препятствий; кроме того, он показал, что таким же образом обнаруживают препятствия и другие рыбы, обладающие электрическими органами. Если опустить в аквариум с нильской щукой пару электродов, подключенных к осциллографу, прибор тотчас же зарегистрирует электрические разряды. Они следуют с постоянной частотой (примерно 300 имп/с), и при этом каждый разряд создает в воде электрическое поле, напоминающее поле вокруг магнитного стержня. Положительным полюсом в данном случае служит голова рыбы, а отрицательным — ее хвост. Любой находящийся в воде предмет искажает привычную конфигурацию электрического поля; оставалось лишь показать, что нильские щуки способны воспринимать свои слабые электрические поля и что с помощью этих полей они обнаруживают различные объекты. Оказалось, что щуки реагируют на движение слабого магнита вблизи аквариума. Кроме того, если записать электрические разряды рыбы на магнитную пленку, а затем воспроизвести эту запись, рыба будет нападать на опущенные в воду электроды. Позднее, для того чтобы выяснить, может ли нильская щука обнаруживать находящиеся вблизи нее предметы, были проведены опыты с условными рефлексами. В аквариум опускали две трубочки из пористой глины, одну из которых заполняли водой из-под крана или каким-либо другим веществом, проводящим электрический ток, а другую — диэлектриком (например, воском или стеклом). Рыбу обучали приближаться к трубочке с проводящим веществом, каждый раз подкрепляя ее правильное поведение кусочком мяса. Вскоре она обучилась подплывать к этой трубочке и не обращать никакого внимания на другую, наполненную диэлектриком. Изменяя содержимое трубок, удалось определить, что нильская щука может обнаружить наличие в одной из них стеклянной палочки диаметром 2 мм. Такая тоненькая палочка вызывает минимальные изменения электрического поля рыбы; чтобы обнаружить эти изменения, нильская щука должна обладать крайне тонкой чувствительностью.

Органы чувств, которыми пользуется рыба для восприятия электрического поля, находятся в кожных покровах головы и очень напоминают органы боковой линии. Они представляют собой крошечные ямки, наполненные желеобразной массой, на дне которых находятся рецепторы. У нильской щуки толстая кожа, которая очень плохо проводит электричество; желеобразное содержимое ямок, напротив, представляет собой хороший проводник и играет роль вспомогательного органа, собирающего и концентрирующего электрический ток.

Вскоре после того, как у нильской щуки была обнаружена способность воспринимать электрические поля, ученые определили биологическое назначение ампул Лоренцини, имеющихся у скатов. В гл. 1 уже отмечалось, что эти органы чувств одно время считали температурными рецепторами или рецепторами давления, однако в конце концов выяснилось, что они являются электрическими рецепторами. Как и сенсорные органы, расположенные на голове нильской щуки, ампулы Лоренцини представляют собой группу чувствительных клеток, которые находятся на дне канала, заполненного желеобразным содержимым. Подобные органы были обнаружены и у других рыб, чувствительных к электричеству, например у африканского слонорыла и у американской ножетелки.

 

Фиг. 34. Электрические органы, расположенные в хвосте ножетелки, генерируют электрическое поле, картина которого напоминает картину магнитного поля, существующего вокруг намагниченного стержня

 

Находящиеся на голове рыбы электрические рецепторы обнаруживают искажения конфигурации этого электрического поля, вызванные объектами, находящимися вблизи рыбы. Плохой электрический проводник (А) вызывает расхождение силовых линий, хороший проводник (Б) — их сжатие.

 

На фиг. 34 показано, как проводники и диэлектрики изменяют конфигурацию электрического поля вокруг головы рыбы. По-видимому, эти изменения влияют на картину нервных импульсов, поступающих от рецепторов в мозг. Каким образом рыба использует информацию, получаемую от воспринимающих электрическое поле органов, для обнаружения точного положения предмета, совершенно не известно, Считается, что электрические рыбы действительно могут обнаруживать окружающие их объекты, поскольку уже доказана способность этих рыб избегать встречающихся на пути препятствий. Часть мозга, связанная с органами электрического чувства, велика по размеру и, по-видимому, должна быть способна производить анализ очень сложной информации, поступающей от этих органов. Работа мозга несколько облегчается благодаря особому способу передвижения электрических рыб. Обычные рыбы плавают в воде за счет ударов хвоста, который колеблется при этом из стороны в сторону, а у большей части рыб, чувствительных к электрическому току, во время плавания тело вытянуто по прямой линии и почти неподвижно. Вряд ли можно считать простым совпадением развитие такого специфического способа плавания у электрических рыб, принадлежащих не только к разным видам, но даже к разным подклассам. У ската электрические органы находятся на узком твердом хвосте; плавают скаты с помощью своих мягких грудных плавников. Многие рыбы, которые относятся к семействам клюворылых и гимнотовидных, в том числе нильская щука и ножетелка, все время держат хвост прямо и передвигаются посредством волнообразных движений длинных плавников, расположенных на спине или на брюхе. Преимущество такого способа передвижения очевидно, так как при этом не искажается картина электрического поля (что было бы неизбежно, если бы рыба двигала хвостом из стороны в сторону); в результате значительно упрощается анализ приходящей в мозг информации.

Рыбы, имеющие электрические органы, обычно живут в мутной воде или активны в ночное время. Глаза у них маленькие, а поэтому восприятие электрического поля должно иметь для них большое значение, хотя еще никто не показал, что какие-либо рыбы, в том числе скаты, и в самом деле как-то используют электрическое чувство. Вполне возможно, что электрическое чувство предназначено не только для того, чтобы избегать препятствий и обнаруживать жертву. Может быть, когда-нибудь выяснится, что оно, подобно другим чувствам, играет определенную роль в передаче информации во время агрессивного поведения или обряда ухаживания. Например, было обнаружено, что нильская щука изменяет частоту своих электрических разрядов, когда в аквариуме, где она находится, воспроизводят ее же собственные разряды, записанные на пленку. Можно предположить, что таким образом эти рыбы избегают «наложения» сигналов один на другой.

Электрическое чувство — это совершенно «новое чувство», о котором еще тридцать лет назад не было известно. Исследование этого чувства привело к открытию рецепторного органа нового типа. Электрическое чувство в корне отлично от всех других, обсуждаемых в этой книге чувств, которыми мы сами в какой-то мере обладаем (хотя животные используют их порой в других целях). Пусть с трудом, но мы все таки можем представить себе, как летучая мышь ориентируется с помощью эхолокации, а пчела — с помощью поляризованного света; однако электрические рыбы живут, по-видимому, в совершенно чуждом нам мире.

С тех пор как Лиссман обнаружил у нильских щук способность воспринимать слабые токи, было открыто еще одно загадочное чувство, по всей вероятности, связанное с только что описанным. В гл. 7 было высказано предположение, что птицы, по-видимому, могут ориентироваться при полете, используя магнитное поле Земли. Мы пока еще не располагаем убедительным доказательством того, что они воспринимают магнитное поле, однако было обнаружено, что некоторые более примитивно организованные животные реагируют на слабое магнитное поле. В Северной Австралии некоторые виды термитов всегда строят гнезда таким образом, что длинная ось гнезда совпадает с направлением север — юг; группа термитников выглядит как флотилия стоящих на якоре кораблей, повернутых носом к ветру. Предполагаемая причина такой ориентации гнезд заключается в том, что их широкие стороны, направленные на запад и восток, должны улавливать слабые лучи утреннего и вечернего солнца, благодаря чему в гнезде поддерживается нужная температура. Никаких доказательств этого предположения не существует; более того, известно, что температура в гнездах термитов других видов никак не зависит от температуры внешней среды. В термитниках очень толстые стены, а температуру воздуха внутри них регулируют сами термиты почти так же, как это делают пчелы в своем улье.

В то же время известно, что некоторые виды термитов воспринимают магнитное поле. Внутри термитника отдельные особи располагаются параллельно силовым линиям магнитного поля Земли (а у некоторых видов — под прямым углом к ним). Это может в какой-то мере объяснить, почему гнезда термитов ориентированы вдоль силовых линий магнитного поля Земли: ведь если головы термитов обращены к северу или к югу, они будут строить свои гнезда вдоль линии, проходящей с севера на юг. Если посадить термитов в железную коробочку, они теряют способность ориентироваться; в то же время, если положить под ящик с термитами сильный магнит, они изменяют положение своего тела и располагаются вдоль новых силовых линий. Других животных также можно сбить с курса, если поместить около них магнит; это удается проделать с такими филогенетически далекими животными, как прудовики, плоские черви и простейшие.

Загадку представляет не только то, почему эти животные ориентируются с помощью магнитного поля, но и то, как они воспринимают это поле. До сих пор еще не найдено никакого органа чувств или рецептора, которые бы реагировали на магнитное поле. Однако рано или поздно исследователи, может быть, обнаружат, что магнитное чувство широко распространено среди самых различных животных; если это так, то у нас нет никаких оснований считать его последним чувством, которое мы откроем. Уже сейчас предполагают, что некоторые люди способны воспринимать радиоволны. В 1968 году было обнаружено, что перистые антенны некоторых ночных бабочек чувствительны к свету, хотя у этих антенн нет ни роговицы, ни хрусталика, ни сетчатки — структур, которые обычно ассоциируются со светочувствительными органами.

Биология в настоящее время переживает свой золотой век. Во всех областях биологических исследований сейчас наблюдаются головокружительные успехи, которые стали возможны благодаря самым последним достижениям других наук, например созданию электронного микроскопа и развитию вычислительной техники. Поистине ошеломляющие успехи сделаны в области молекулярной биологии, биологии популяций и сообществ. Так же быстро развивается и физиология органов чувств; вскрываются сложнейшие механизмы их функционирования, благодаря чему мы имеем возможность объяснить поведение животных с точки зрения того, что могут и чего не могут их органы чувств, вместо того, чтобы просто считать, будто они живут в таком же мире, как наш. Однако по мере накопления информации возникают все новые и новые проблемы. Исходя из общего запаса знаний, которыми мы сейчас располагаем, следует считать, что каждая глава этой книги является далеко не полной: мы всегда должны помнить, что для нас, к сожалению, еще многое остается загадкой, например то, каким образом функционирует тот или иной орган чувств или даже каково биологическое назначение некоторых из этих органов. В конце концов мы обязательно узнаем, каким образом термиты ощущают магнитное поле Земли и почему они на него реагируют, но к этому времени уже наверняка будут открыты новые, не менее загадочные чувства.

 

Фото I. В то время, когда коза щиплет листья, уши ее находятся в постоянном движении. Это помогает животному точно определить, откуда приходят звуки. Двигая одним ухом совершенно независимо от другого, коза может концентрировать свое внимание на двух звуках одновременно.

 

Фото II. Сова сипуха на своем насесте с только что пойманной землеройкой. Эта сова охотится с помощью зрения или слуха, которые характеризуются необычайной остротой. Единственное средство защиты для землеройки — надежное укрытие.

 

Фото III. Обитающая в пустынях Северной Америки кенгуровая крыса ведет ночной образ жизни и обладает чрезвычайно острым слухом. Она слышит слабые шорохи, свидетельствующие о приближении совы или гремучей змеи, и в момент их нападения мгновенно отпрыгивает в сторону.

 

Фото IV. Фотография подковоносой летучей мыши, на которой хорошо видна характерная кожистая складка на носу; эта складка может изгибаться, колеблясь из стороны в сторону, и таким образом изменять направление ультразвукового луча, испускаемого летучей мышью.

 

Фото V. Южноамериканские птицы гуахаро ориентируются с помощью сонара. Они отыскивают путь в кромешной тьме пещер, прислушиваясь к эху от своих криков. Обратите внимание на птиц, сидящих на гнезде позади выступа скалы.

 

Фото VI. Жировая подушка дельфина — «дыня» — находится между клювом и воздушными мешками; она фокусирует ультразвуковые сигналы, производимые с помощью воздушных мешков. На клюве можно видеть цепочку сенсорных ямок. В каждом такой ямке имеются волоски (остатки вибрисс наземных зверей), которые воспринимают вибрации в воде.

 

Фото VII. Сонар позволяет землеройкам обнаруживать крупные объекты; благодаря этому животные могут избегать открытых пространств, где они беззащитны против хищников.

 

Фото VIII. Большую часть времени илистые прыгуны проводят на суше. Их глаза расположены на своего рода выдвижных «турелях» и защищены от высыхания своеобразными «очками».

 

Фото IX. Глаза играют важную роль в жизни лягушки: с их помощью она находит пищу и водоемы и вовремя обнаруживает врагов.

 

Фото X. Сложные глаза комнатной мухи состоят из многих тысяч элементов. Число таких элементов в сложном глазе насекомого является хорошим показателем его способности различать детали предметов.

 

Фото XI. Невидимые человеку медоуказчики.

А. Цветки лапчатки прямостоячей (Potentilla tormentilla = P. erecta), сфотографированные в обычном свете.

Б. Те же самые цветки, сфотографированные в ультрафиолетовом свете. Указатели меда помогают насекомым отыскать в цветках нектар.

 

Фото XII. Лосось перепрыгивает порог на пути к месту нереста. Он поднимается вверх по реке от самого ее устья, руководствуясь запахом воды из своего нерестилища.

 

Фото XIII. Крот, зажавший передними лапами свою добычу. Обратите внимание на вибриссы, которые хорошо видны на его мордочке. Предполагают, что они играют важную роль в жизни крота под землей, помогая ему обнаруживать самые различные колебания.

 

Фото XIV. Боковая линия карпов представляет собой ряд точек, расположенных вдоль боковой поверхности тела. Каждая точка — это крошечное отверстие, ведущее в трубочку, где находятся органы чувств. Прямо перед глазами находятся ноздри. Они представляют собой U-образные трубочки, в которых расположены органы обоняния, и не имеют никакого отношения к дыханию.

 

Фото XV. Пытаясь выбраться из сети, кузнечик сам предрешает свою гибель. Почувствовав колебания паутины, притаившийся паук быстро схватывает свою добычу.

 

Фото XVI. Самец сорной курицы регулирует температуру своего гнезда (которое нагревается либо за счет солнечного тепла, либо за счет тепла, выделяемого гниющими растениями), разгребая песок в стороны или набрасывая его на гнездо. Через 11 мес. из яиц вылупляются, птенцы и самостоятельно выбираются на поверхность.

 

Фото XVII. Лицевые ямки гремучей змеи расположены позади и несколько ниже ноздрей. Чувствительность этих ямок к инфракрасному свету позволяет змее ночью отыскивать добычу.

 

Фото XVIII. Ножетелка двигается в воде с помощью своего длинного почти прозрачного брюшного плавника, благодаря чему расположенный в ее хвосте электрический орган остается неподвижным. Электрический ток, вырабатываемый этим органом, помогает рыбе обнаруживать находящиеся поблизости объекты.

Литература

 

Amoore J. E., 1965. Psychophysics of odor, Cold Spring Harbour Symp. Quant. Biol., 30, 623–638.

Adler J., 1965. Chemotaxis in Escherichia coli, Cold Spring Harbour Symp. Quant. Biol., 30, 289–292.

Barrows W. M., 1915. The reactions of an orb-weaving spider Epeira sclopetaria Clerck, to rhythmic vibrations of its web, Biol. Bull., 29, 316–326.

Beament J. W. C. (ed.), 1962. Biological receptor mechanisms, Symposia of the Society for Experimental Biology, No. XVI, Cambridge.

Bell Q. H., Davidson J. N., Scarborough H, 1961. Textbook of Physiology and Biochemistry, Livingstone.

Вelton P., Kempster R. H., 1962. A field test on the use of sound to repel the European corn-borer, Entomologia experi-mentalis et applicata, 5, 281–288.

Benzinger Т. H., 1961. The human thermostat, Scientific American, 204, 134–147.

Bradshaw S. D., Main A. R., 1968. Behavioural attitudes and regulation of temperature in Amphibolurus lizards, J. Zool., 154, 193–222.

Brown F. A., 1962. Responses of the planarian, Dugesia, and the protozoan, Paramecium, to very weak horizontal magnetic fields, Biol. Bull., 123, 264–281.

Brown M. E. (ed.), 1957. The physiology of fishes, Vol 2 — Behaviour, Academic Press, New York.

Bullock Т. H., Diecke F. P. J., 1956. Properties of an infra-red receptor, J. Physiol., 134, 47–87.

Bullock T. H., Fox W., 1957. The anatomy of the infra-red sense-organ in the facial pit of pit-vipers, Quart. J. Micr. Sci., 98, 219–234.

Calhoun J. В., 1962. Population density and social pathology, Scientific American, 206, 139–148.

Сrips D. J., 1967. Barnacles, Science J., 3, 69–73.

Düecker Q., 1964. Colour vision in mammals, J. Bombay Nat. History Soc, 61, 572–586.

Dunning C. D., 1968. Warning sounds of moths, Z. für Tierpsychol., 25, 129–138.

Emlen J. Т., Penney R. L., 1964. Distance navigation in the Adelie penguin, Ibis, 106, 417–431.

Evans P. R., 1968. Reorientation of passerine night migrants after displacement by the wind, British Birds, Vol. 61, № 7, 281–303.

Ewer R. F., 1968. Ethology of Mammals, Logos.

Finkelstein D., Grüsser O.-J., 1965. Frog retina: detection of movement, Science, N. Y., 150, 1050–1051.

Flock A., 1965. Transducing mechanism in the lateral line canal organ receptors, Cold Spring Harbour Symp. Quant. Biol., 30, 133–145.

Von Frish K., 1951. Recent advances in the study of the orientation of the honey bee, The Bulletin of Animal Behaviour, № 9.

Gary N. E., 1962. Chemical mating attractants in the queen honey bee, Science, 136, 773–774.

Geste1and R. C, 1966. The mechanics of smell, Discovery, (February 1966), 29–34.

Griffin D. R., 1958. Listening in the Dark, Yale University Press.

Griffin D. R., Webster F. A., Michael C. R., 1960. The echolocation of flying insects by bats, Anim. behav, 8, 141–154.

Gould E., Nevus N. C, Novick A., 1964. Evidence for echo-location in shrews, J. Exp. Zool., 156, 19–38.

Hamburger V., 1926. Versuche über Komplementär-Farben bei Elbritzen (Phoxinus laevis), Z. vergleich. Physiol., 4, 286–304.

Hasкell R. Т., 1961. Insect Sounds, Witherby.

Hasler A. D., Larsen J. A., 1955. The homing salmon, Scientific American, 193, 72–76.

Henson O. W., 1965. The activity and function of the middle-ear muscles in echolocating bats, J. Physiol., 180, 871–887.

Horridge G. A., Boulton P. S., 1967. Prey detection by Chaetognatha via a vibration sense, Proc. Royal. Soc, Series B, 168, 413–419.

Ilse D., 1937. New observations on responses to colours by egg-lying butterflies, Nature, 140, 544.

Jenkins M. F., 1960. On the method by which Stenus and Dianous (Coleoptera: Staphylinidae) return to the banks of a pool, Trans. Roy. Entom. Soc, London, 112, 1.

Кa1mus H., 1955. The discrimination by the nose of the dog of individual human odours and in particular of the odours of twins, Brit. J. Anim. Behav., 3, 25–31.

Lees A, D., 1948. The sensory physiology of the sheep tick Ixodes ricinus, L., J. Exp. Biol., 25, 145–207.

Lettvin J. Y., Gesteland R. C., 1965. Speculation on smell, Cold Spring Harbour Symp. Quant. Biol., 30, 217–225.

Levick M. G., 1914. Antarctic Penguins: A study of their social habits, Heinemann.

Lissmann H. W., 1958. On the function and evolution of electric organs in fish, J. Exp. Biol)., 35, 156 — I91.

Lissmann H. W., Machin K. E., 1958. The mechanism of object location in Gymnarchus niloticus, J. Exp. Biol., 36, 451–486.

Machin К. E., Lissmann H. W., 1960. The mode of operation of the electric receptors in Gymnarchus niloticus, J. Exp. Biol., 37, 801–811.

Matthews G. V. Т., 1968. Bird Navigation, Cambridge.

Medway Lord, 1967. The function of echonavigation amongst swiftlets, Anim. Behav., 15, 416–420.

Mrosovsky N., 1967. How turtles find the sea, Science J., November, 53–57.

Mrosovsky N… Shettleworth S. J., 1968. Wavelength preferences and brightness cues in the water finding behaviour of sea turtles, Behaviour, 32, 211–257.

Muntg W. R. A., 1962. Microelectrode recordings from the diencephalon of the frog (Rana plpiens) and a blue-sensitive system, J. Neurophysiol., 25, 699–711.

Muntg W. R. A., 1962. Effectiveness of different colours of light in releasing the positive phototactic behaviour of frogs, and a possible function of the retinal projection to the diencephalon, J. Neurophysiol., 25, 712–720.

Murray R. W., 1962. The response of the ampullae of Lorenzini of elasmobranchs to electrical stimulation, J. Exp. Biol., 39, 119–128.

Norris K. S., Prescott J. H., Asa-Dorian P. V., Perkins P., 1961. An experimental demonstration of echolocation behaviour in the porpoise Tursiops truncatus (Montagu), Biol. Bull., 120, 163–176.

Palmer E., Weddell G., 1964. The relation between structure, innervation and function of the skin of the bottle nose dolphin (Tursiops truncatus), Proc. Zoo. Soc., 143, 553–568.

Pearcy W. G., Meyer S. L., Munk O., 1958. A «four-eyed» fish from the deep-sea: Bathylychnops exilis Cohen, 1958, Nature, 207, 1260–1261.

Pumphrey R. J., 1940. Hearing in insects, Biol. Rev., 15, 107–132.

Quilliam T. A., 1966. The mole's sensory apparatus, J. Zool., 149, 76–88.

Ransome R. D., 1968. The distribution of the greater horse-shoe bat, Rhinolophus ferrum-equinum, during hibernation, in relation to environmental factors, J. Zool., 154, 77–112.

Rоeder К. D., 1962. Behaviour of free flying moths in the presence of ultrasonic pulses, Anim. Behav., 10, 300–304.

Rоeder K. D., Treat A. E., 1957. Ultrasonic reception by the tympanic organ of noctuid moths, J. Exp. Zool., 134, 127–157.

Romanes G. J., 1885. Mental evolution in Animals, Keagan Paul.

Rushton W. A. H., 1965. Chemical basis of colour vision and colour blindness, Nature, 206, 1087–1091.

Tansleу К., 1965. Vision in Vertebrates, Chapman and Hall.

Treat A. E., 1956. The reaction time of noctuid moths to ultrasonic stimulation. J. New York Enfom. Soc., 64, 165–171.

Walcott C., 1963. The effect of the web on sensitivity in the spider, Achaeanaria tepidariorum (Koch), J. Exp. Biol., 40, 595–611.

Walсоtt C., van der Кloot W. G., 1959. The physiology of the spider vibration receptor, J. Exp. Zool., 141, 191–244.

Webster F. A., Griffin D. R., 1962. The role of the flight membranes in insect capture by bats, Anim. Behav., 10, 332–340.

Wenzel В. M., 1968. Olfactory prowess of the kiwi, Nature, 220, 1133–1134.

Wever E. G., Bray C. W., 1933. A new method for the study of hearing in insects, J. сотр. cell Physiol., 4, 79–93.

Wigglesworth V. В., 1953. The principles of Insect Physiology, Methuen.

Wigglesworth V. В., Gillet J. D., 1934. The function of the antennae of Rhodnius prolixus and the mechanism of orientation to the host, and Confirmatory experiments, J. Exp. Biol., 11, 120–139, 408–410.

Wilson E. O., 1963. Pheromones, Scientific American, 208, 100–114.

Wolken J. J., 1968. The photoreceptors of Arthropod eyes, Symp. zool. soc., Lond., 23, 113–133.

Wright R. H., 1964. The Science of Smell, George Allen and Unwin.

 


[1]Все фотографии помещены в конце книги. — Прим. ред.

 

[2]Эти эксперименты, проведенные Густавом Крамером, более подробно описаны в книге Д. Гриффина «Перелеты птиц», изд-во «Мир», М., 1966, стр. 117–120. — Прим. перев.

 

[3]Более точно — чувствительность органов обоняния. — Прим. перев.

 

[4]В США термометр обычно помещают не под мышку, а в рот. — Прим. перев.

 

[5]Автор здесь не совсем точен. Инкубационный период глазчатой курицы продолжается всего 60 дней, но самки откладывают яйца с большими перерывами в течение долгого времени, и самцу приходится заниматься гнездом действительно на протяжений 11 мес. — Прим. перев.