Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Этапы построения прогноза по временным рядам



Экстраполяционное прогнозирование экономических процессов, представленных одномерными временными рядами, сводится к выполнению следующих основных этапов:

1) предварительный анализ данных;

2) построение моделей: формирование набора аппроксимирующих функций (кривых роста) и численное оценивание параметров моделей;

3) проверка адекватности моделей и оценка их точности;

4) выбор лучшей модели;

5) расчет точечного и интервального прогнозов.

На первомэтапе производится:

· выявление аномальных наблюдений;

· проверка наличия тренда;

· сглаживание временных рядов;

· расчет показателей развития динамики экономических процессов.

Так как наличие аномальных наблюдений приводит к искажению результатов моделирования, то необходимо убедиться в отсутствии аномалий данных. В качестве примера аномалии может служить скачок курса доллара, зафиксированный в «черный вторник».

Следующая процедура этапа предварительного анализа данных – выявление наличия тенденций в развитии исследуемого показателя. Отметим, что тенденция прослеживается не только в увеличении или уменьшении среднего текущего значения временного ряда, но она присуща и другим его характеристикам: дисперсии, автокорреляции, корреляции с другими показателями и т.д. Тенденцию среднего визуально можно определить из графика исходных данных, а более точно – с помощью метода Фостера–Стьюарта, метода проверки существенности разности средних, подробное описание которых дано в работе.

Наличие тенденции среднего уровня на графике становится более заметным, когда на нем отражены сглаженные значения исходных данных.

Процедура сглаживания необходима при построении некоторых математических моделей и для устранения аномальных наблюдений. Чаще всего для сглаживания применяются методы простой скользящей средней, взвешенной скользящей средней и экспоненциального сглаживания.

Традиционными показателями, характеризующими развитие экономических процессов, были и остаются показатели роста и прироста. Для характеристики динамики изменения экономических показателей все чаще используется понятие автокорреляции, которая характеризует не только взаимозависимость уровней одного и того же ряда, относящихся к разным моментам наблюдений, но и степень устойчивости развития процесса во времени, величину оптимального периода прогнозирования и т.п.

Второй, третий, четвертый и пятый этапы построения модели и прогноза по временным рядам рассмотрим на примере (задача 8).