Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Решение.



1. Строим положение механизма в соответствии с заданными углами (рис. К 3б; на этом рисунке изображаем все векторы скоростей).

2. Определяем υB. Точка В принадлежит стержню АВ. Чтобы найти υB, надо знать скорость какой-нибудь другой точки этого стержня и направление υB. По данным задачи, учитывая направление ώ1, можем определить υА, численно:

Направление υВ найдем, учтя, что точка В принадлежит одновременно ползуну, движущемуся вдоль направляющих поступательно. Теперь, зная υА инаправление υB, воспользуемся теоремой о проекциях скоростей двух точек тела (стержня АВ) на прямую, соединяющую эти точки (прямая АВ). Сначала по этой теореме устанавливаем, в какую сторону направлен вектор υB (проекции скоростей должны иметь одинаковые знаки).Затем, вычисляя эти проекции, находим:

3. Определяем υЕ. Точка Е принадлежит стержню DE. Следовательно, по аналогии с предыдущим, чтобы определить υЕ,надо сначала найти скорость точки D, принадлежащей одновременно стержню АВ. Для этого, зная υA и υB, строим мгновенный центр скоростей (МЦС) стержня АВ; это точка С3, лежащая на пересечении перпендикуляров к υА и υB, восставленных из точек А и В (к υА перпендикулярен стержень 1). По направлению вектора υA определяем направление поворота стержня АВ вокруг МЦС С3. Вектор υD перпендикулярен отрезку C3D, соединяющему точки D и С3, и направлен в сторону поворота. Величину υD найдем из пропорции:

Чтобы вычислить С3D и С3В, заметим, что ∆AС3В-прямоугольный, так как острые углы в нем равны 30° и 60°, и что С3В=АB×sin30°=0,5АВ=BD. Тогда ∆ВС3D является равносторонним и С3В=C3D. В результате равенство дает:

Так как точка Е принадлежит одновременно стержню О2Е, вращающемуся вокруг О2, то υЕ ^ О2E. Тогда, расставляя из точек Е и D перпендикуляры к скоростям υЕ иυD,построим МЦС С2стержня DE. По направлению вектора υD определяем направление поворота стержня DE вокруг центра С2. Вектор υE направлен в сторону поворота этого стержня. Из рис. К 3б видно, что ÐC2ED=ÐC2DE=30°, откуда С2Е=C2D. Составив теперь пропорцию, найдем, что:

4. Определяем ώ2. Так, как МЦС стержня 2известен (точка С2

, то

5. Определяем аВ (рис. К 3в, на котором изображаем все векторы ускорений). Точка В принадлежит стержню АВ. Чтобы найти аВ, надо знать ускорение какой-нибудь другой точки стержня АВ и траекторию точки В. По данным задачи можем определить aА=aАt+aАn, где численно:

Вектор аАn направлен вдоль АО1аАt-перпендикулярно АО1изображаем эти векторы на чертеже (см. рис. К 3в). Так, как точка В одновременно принадлежит ползуну, то вектор аB параллелен направляющим ползуна. Изображаем вектор аB на чертеже, полагая, что он направлен в ту же сторону, что и υB.

Для определения аB воспользуемся равенством:

Изображаем на чертеже векторы аnВА (вдоль ВА от B к A) и аВАt(в любую сторону перпендикулярно ВА); численно аnB=ώ23l. Найдя ώ3 с помощью построенного МЦС С3 стержня 3, получим:

Таким образом, у величин, входящих в равенство (8), неизвестны только числовые значения аВ и аtВА,их можно найти, спроектировав обе части равенства (8) на какие-нибудь две оси.

Чтобы определить аВ, спроектируем обе части равенства (8) на направление ВА (ось х),перпендикулярное неизвестному вектору аtВА. Тогда получим:

Подставив в равенство (10) числовые значения всех величин из (7) и (9), найдем, что:

aB=0,72 м/с2.

Так, как получилось aВ>0, то, следовательно, вектор аВ направлен, как показано на рис. К Зв.

6. Определяем έ3. Чтобы найти έ3, сначала определим аtВА. Для этого обе части равенства (8) спроектируем на направление, перпендикулярное АВ (ось у). Тогда получим:

Подставив в равенство (12) числовые значения всех величин из (11) и (7), найдем, что аtВА=-3,58 м/с2. Знак указывает, что направление аtВА противоположно показанному на рис. К 3в.

Теперь из равенства аtВА=έ3l3 получим:

Ответ: υB=0,46 м/с; υE=0,46 м/с; ώ2=0,67 с-1; аB=0,72 м/с2; έ3=2,56 с-2.


 

Задача К4

Прямоугольная пластина (рис. К 4.0-К 4.4) или круглая пластина радиуса R=60 см (рис. К 4.5-К 4.9) вращается вокруг неподвижной оси по закону j=f1(t) заданному в табл. К 4. Положительное направление отсчета угла j показано на рисунках дуговой стрелкой. На рис. 0, 1, 2, 5, 6 ось вращения перпендикулярна плоскости пластины и проходит через точку О (пластина вращается в своей плоскости); на рис. 3, 4, 7, 8, 9 ось вращения ОО1лежит в плоскости пластины (пластина вращается в пространстве).

По пластине вдоль прямой BD (рис. 0-4) или по окружности радиуса R (рис. 5-9) движется точка М; закон ее относительного движения, т. е. зависимость s=AM=f2(t)(s-в сантиметрах, t-в секундах), задан в таблице отдельно для рис. 0-4 и для рис. 5-9; там же даны размеры b и l. На рисунках точка М показана в положении, при котором s=AM>0 (при s<0 точка М находится по другую сторону от точки А).

Найти абсолютную скорость и абсолютное ускорение точки М в момент времени t1=1с.