Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Указания.



Задача Д1 — на составление и интегрирование дифференциальных уравнений движения точки (решение основной задачи динамики). Решение задачи разбивается на две части. Сначала нужно составить векторное уравнение движения точки (груза) на участке АВ, спроектировать это уравнение на координатную ось, направленную вдоль АВ, и проинтегрировать полученное дифференциальное уравнение методом разделения переменных, учитывая начальные условия (вторая задача динамики точки). Затем, зная время движения груза на участке АВ или длину этого участка, определить скорость груза в точке В. Эта скорость будет начальной для движения груза на участке ВС.

Посте этого нужно составить векторное уравнение движения точки на участке ВС и спроектировать это уравнение на 2 координатные оси, направленные вдоль ВС и перпендикулярно ВС. Затем проинтегрировать дифференциальное уравнение движения груза на участке ВС тоже с учетом начальных условий, ведя отсчет времени от момента, когда груз находится в точке В, и полагая в этот момент t = 0. При интегрировании уравнения движения на участке АВ в случае, когда задана длина l участка, целесообразно перейти в уравнении от переменных Vx , t к переменным Vх, x, учитывая, что

Груз D массой m, получив в точке А начальную скорость υ0, движется в изогнутой трубе ABC, расположенной в вертикальной плоскости; участки трубы или оба наклонные, или один горизонтальный, а другой наклонный (рис. Д1.0-Д1.9, табл. Д1).

На участке АВ на груз кроме силы тяжести действуют постоянная сила Q (ее направление показано на рисунках) и сила сопротивления среды R, зависящая от скорости υ груза (направлена против движения) ; трением груза о трубу на участке АВ пренебречь.

В точке В груз, не изменяя своей скорости, переходит на участок ВС трубы, где на него кроме силы тяжести действуют сила трения (коэффициент трения груза о трубу f=0,2) и переменная сила F, проекция которой Fx на ось х задана в таблице.

Считая груз материальной точкой и зная расстояние АВ=l или время t1 движения груза от точки А до точки В, найти закон движения груза на участке ВС, т. е. х=f(t), где х=BD.