Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Теорема 1.



1) Якщо функція f(x), яка має похідну в інтервалі (a, b), зростає на [a, b], то її похідна в інтервалі (a, b) невід’ємна, тобто ¦¢(х)³0.

2) Якщо функція f(x) неперервна на відрізку [a, b] і має похідну в (a, b), причому ¦¢(х)>0 для a<x<b, то ця функція зростає на [a, b].

Y

a

 

 
 

 


рис.40 X

Скорочено можна записати:

Доведення. 1.Нехай зростає і в околі точки існує скінчена похідна . Розглянемо ліву похідну в цій точці

та праву похідну

.

Оскільки ліва і права похідні збігаються в точці , то із останніх нерівностей випливає .

2.Нехай в околі точки . Застосуємо до різниці формулу Лагранжа

. (1)

Розглянемо два випадки. а) , тоді і права частина , тобто із (1) випливає

- функція зростає

б) , тоді і , із (1) маємо - функція зростає.

Отже, в околі точки (як зліва так і справа) функція зростає, якщо .

Аналогічна теорема має місце, якщо функція f(x) спадає.