Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Энтропия и ее свойства



 

Энтропией называется термодинамическая функция, полный дифференциал которой ,

где – тепло, подведенное к газу в обратимом процессе. Размерность энтропии Дж/(кг∙К).

 

3.7.1. Свойства энтропии в обратимых процессах

1. Для кругового обратимого процесса из неравенства Клазиуса следует, что или .

2. Изменение энтропии в любом обратимом процессе перехода вещества из состояния 1 в состояние 2 не зависит от пути этого процесса, а зависит только от параметров вещества в его начальном и конечном состояниях.

Докажем это, рассмотрев обратимый круговой процесс 1-а-2-b-1 (рис. 3.9), в котором некоторое тело (газ) сначала переходит из состояния 1 в

состояние 2 по пути 1-а-2, а потом возвращается в состояние 1 по пути 2-b-1. Согласно неравенству Клаузиуса, в этом случае

или .

Теперь рассмотрим такой же процесс, но с переходом из состояния 1 в состояние 2 по другомупути 1-с-2 (см. рис. 3.9) . В этом случае также

или .

Сравнивая эти равенства, видим, что

или .

Таким образом, энтропия является функцией состояния вещества, а её величина однозначно определяется параметрами его состояния в начале и конце процесса.

3. Энтропия термодинамической системы, состоящей из нескольких частей (энтропии которых равны S1, S2,..., Sn), равна сумме энтропий всех её частей:

.

4. Энтропия отдельного тела или системы тел в различных обратимых процессах может как возрастать, так и уменьшаться. Действительно, из определения энтропии следует, что

.

Так как , а может быть как положительным, так и отрицательным, то подводу теплоты соответствует , а отводу - .

   
Рис. 3.9 Рис. 3.10

 

3.7.2. Особенности изменения энтропии в необратимых процессах

Пусть рабочее тело переходит из состояния 1 в состояние 2 в необратимом процессе 1а2, а возвращается в исходное состояние в обратимом процессе 2б1 (рис. 3.10). Тогда цикл 1а2б1 является необратимым и для него справедливо неравенство Клазиуса или .

Но для обратимого процесса .

Тогда для необратимого процесса получим .

Таким образом, в необратимых процессах изменение энтропии всегда больше интегральной суммы приведенных теплот данного процесса.

В дифференциальной форме последнее неравенство для необратимых процессов можно записать в виде .

Это соотношение можно объединить с выражением для обратимых процессов, в которых .

Тогда в общем случае получим .

Знак относится к необратимым процессам, а знак равенства – к обратимым процессам.

Это выражение является аналитической записью второго закона термодинамики.