Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Штучна оптична анізотропія. Обертання площини поляризації



 

Подвійне променезаломлення спос­терігається в природних анізотропних се­редовищах. Існують різні способи отри­мання штучної оптичної анізотропії, тобто надання оптичної анізотропії при­родно ізотропним речовинам.

Оптично ізотропні речовини стають оптично анізотропними під дією :

 

одностороннього стиску або розтягу (дослідження проводив Брюстернакристалах кубічної системи, склі та ін.);

електричного поля (рідини, аморфні тіла, гази) (Керр);

магнітного поля (рідини, скло, колої­ди) (Коттон, Мутон).

 

У згаданих випадках речовина набуває властивостей одновісного кристала, оптична вісь якого збігається з напрямком дії механічної деформації або дії електричного чи магніт­ного полів.

Мірою оптичної анізотропії служить різниця показників заломлен­ня звичайного і незвичайного променів у напрямку, перпендикулярному до оптичної осі.

Оптичну анізотропію, яка виникає під впливом деформації, можна виявити, якщо помістити досліджуване тіло А між поляризатором ρ і аналізатором а, які схрещені між собою (рис.10). Доки тіло не деформоване, така система світла не пропускає.

При односторонньому стиску або розтязі тіла вздовж напрямку ОО в ньому виникає оптична анізотропія, яка еквівалентна ані­зотропії одновісного кристала з оптичною віссю ОО. Звичайний і незвичайний про­мені будуть поширюватися в напрямку, який перпендикулярний до ОО, із різними швидкостями υ0 і υе.

 

 

Рис. 10

 

Якщо головний пе­реріз поляризатора не паралельний і не перпендикулярний до ОО, то світло, яке пройшло через деформоване тіло, стане еліптично поляризованим і його не можна погасити аналізатором.

Різниця коефіцієнтів заломлення може служити мірою анізотропії. Досліди показують, що різниця пропорційна напрузі σ в даній точці тіла:

 

(15)

 

 

де - коефіцієнт пропорційності, який залежить від властивостей речовини.

Різ­ниця фаз, яку матимуть звичайний і незви­чайний промені, пройшовши тіло завтов­шки l, дорівнює

 

, (16)

де – довжина хвилі світла у вакуумі;

– новий коефіцієнт пропорційності.

Явище штучної оптичної анізотропії при деформаціях використовують для ви­явлення внутрішніх залишкових деформацій, які можуть виникати у виробах зі скла та інших прозорих ізотропних матеріалів внаслідок порушення технології їх виго­товлення. Оптичний метод вивчення на прозорих моделях розподілу внутрішніх напруг у різних деформованих частинах машин і споруд широко застосовують у су­часній техніці. Для цього використовують моделі, виготовлені з целулоїду або іншої ізотропної речовини.

Оскільки величина оптичної анізо­тропії пропорційна напрузі σ, то за виг­лядом смуг однакового кольору, які виникають при спостереженні моделі між схрещеними ніколями, можна зробити висновок про величину залишкових деформацій.

Оптична анізотропія може виникнути також і в рідині під впливом зовнішніх дина­мічних впливів. Виникнення оптичної ані­зотропії в потоці рідини може бути використане для вивчення властивостей полімерів і пластмас.

У 1875р. Д. Керр виявив, що рідкий або твердий ізотропний діелектрик, вміще­ний у дуже сильне однорідне електричне поле, стає оптично анізотропним. Це яви­ще називають ефектом Керра. Принци­пову схему спостереження цього явища в рідинах зображено на рис.10, де Р і а -поляризатор і схрещений з ним аналізатор (рис.11).

Між ними розміщена кювета з конденса­тором (комірка Керра), між пластинами якого знаходиться досліджувана рідина. За відсутності електричного поля світло через систему не проходить.

Досліди показали, що під дією одно­рідного електричного поля в плоскому конденсаторі рідина набуває властивостей одновісного двозаломлюючого кристала, оптична вісь якого збігається з напрямком вектора напруженості електричного поля конденсато­ра. Різниця показників заломлення рідини для звичайного і незвичайного променів монохроматичного світла в напрямку, який перпендикулярний до вектора , пропор­ційна :

 

 

(17)

 

де - коефіцієнт пропорційності.

 

 

Рис. 11

 

 

Якщо довжина шляху променів між обкладками конденсатора l, то різниця фаз між звичайним і незвичайним променями буде дорівнювати

 

 

, (18)

 

де - стала Керра, яка залежить від природи речовини, довжини хвилі , тем­ператури і швидко зменшується з її збіль­шенням.

Часто користуються іншою кон­стантою Керра К, яка пов'язана з В спів­відношенням

 

,

де n – абсолютний показник заломлення речовини за відсутності електричного поля.

У 1930 р. було виявлено існування ефекту Керра і в газах. Трудність спосте­реження цього явища пов'язана з тим, що значення В для газів на кілька порядків менше ніж для рідин.

Для більшості речовин , тобто ці речовини за своїми оптичними властивостями в однорідному електричному полі подібні до оптично позитивних одновісних кристалів. Є речовини, для яких B<0.

Ефект Керра пояснюється різною поляризацією молекул за різними напрям­ками. За відсутності поля молекули орієнтовані довільно, тому рідина в цілому не виявляє анізотропії. Під дією поля моле­кули повертаються так, щоб в напрямі по­ля були орієнтовані або їх дипольні елек­тричні моменти (у полярних молекул), або напрям найбільшої поляризації (у неполяр­них молекул). В результаті речовина стає оптично анізотропною.

Ефект Керра практично безінерційний, тобто перехід речовини з ізотропного стану в анізотропний (і назад) при вмикан­ні поля становить с. Тому цей ефект може бути ідеальним світловим затвором і застосовується в швидко­плинних процесах (звукозапис, відтворен­ня звуку, швидкісні фото - і кінозніман­ня), в оптичній локації.

Штучну анізотропію можна створити також дією магнітного поля, яка спостерігається у речовинах, молекули яких анізотропні, тобто в парамагнетиках. За відсутності зовнішнього магнітного по­ля молекули розміщуються хаотично, ре­зультатом чого є статистична анізотропія. Якщо таку речовину помістити в досить сильні магнітні поля, то відбудеться напрямлена орієнтація власних магнітних моментів молекул. Це зумовлює анізотро­пію речовини, яка приводить до подвій­ного променезаломлення. Таке середови­ще поводить себе як одновісний кристал, оптична вісь якого паралельна вектору ін­дукції поля . Це явище називається яви­щем Коттона-Мутона, або магнітооптич­ним. Різниця показників заломлення сере­довища в цьому випадку дорівнює

 

, (19)

 

де - коефіцієнт пропорційності.

Різни­ця фаз між звичайним і незвичайним про­менями дорівнює

 

(20)

де - стала, яка залежить від природи речовини, довжини хвилі світла і температури.

У кристалічних тілах, а також у деяких ізотропних рідинах, крім подвій­ного заломлення променів, спостерігається явище, яке полягає в тому, що площина коливань електричного вектора світлової хвилі повертається на деякий кут при проходженні світла крізь такі речовини. Це явище називається обертанням площини поляризації або оптичною активністю. Якщо речовина не знаходиться у зовніш­ньому магнітному полі, то оптична актив­ність буде природною.

Природну оптичну активність відкрив у 1811 р. Д. Араго на пластинках кварцу, вирізаних перпендикулярно до оп­тичної осі.

Прийнято визначати напрям обер­тання площини поляризації відносно спо­стерігача, погляд якого спрямований на­зустріч падаючому променю. Обертання називають правим (додатним), якщо пло­щина поляризації обертається вправо (за годинниковою стрілкою) для спостерігача, і лівим (від'ємним), якщо вона оберта­ється вліво.

Експериментально встановлено, що в природі існує два типи кристалів кварцу, які є дзеркальним відображенням один одного. Перші обертають площину поляриза­ції вправо, другі – вліво і відповідно нази­ваються право- і лівоповоротним кварцом. Кут обертання площини поляризації про­порційний товщині шару оптично активної речовини і для монохроматичного світла, довжина світлової хвилі якого визна­чається формулою

 

, (21)

 

де l – довжина шляху променя в оптично активному середовищі;

а – коефіцієнт пропорційності, який називають оберталь­ною здатністю, або питомим обертанням.

 

Коефіцієнт пропорційності залежить від природи речовини, температури та довжини хвилі і дорівнює величині кута, на який повертається пло­щина поляризації монохроматичного світ­ла при проходженні шару завтовшки l м.

Для оптично активних рідин та роз­чинів Ж. Біо у 1831 р. встановив, що кут повороту площини поляризації прямо про­порційний товщині шару l і концентрації С оптично активної речовини, тобто

 

, (21)

 

 

де - коефіцієнт пропорційності, який називається питомим обертанням розчи­ну.

Коефіцієнт залежить від природи оптично активної речовини і розчинника, температури та довжини хвилі світла.

Біо також експериментально вста­новив наближену залежність величини від довжини хвилі

 

. (22)

 

 

Властивості оптичної активності розчинів дають змогу визначити їх концен­трації. Прилади, за допомогою яких про­водять такі вимірювання, називаються поляриметрами. Оскільки для розчину цукру питоме обертання значне, то поляриметри набули широкого застосуван­ня в медичній практиці й техніці.