Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Отношение бесконечно малых



Билет

Теорема Лопиталя:

1. либо ;

2. и дифференцируемы в проколотой окрестности ;

3. в проколотой окрестности ;

4. существует ,

тогда существует .

Пределы также могут быть односторонними.

 

Отношение бесконечно малых

Докажем теорему для случая, когда пределы функций равны нулю (то есть неопределённость вида ).

Поскольку мы рассматриваем функции и только в правой проколотой полуокрестности точки , мы можем непрерывным образом их доопределить в этой точке: пусть . Возьмём некоторый из рассматриваемой полуокрестности и применим к отрезку теорему Коши. По этой теореме получим:

,

но , поэтому .

Дальше, записав определение предела отношения производных и обозначив последний через , из полученного равенства выводим:

для конечного предела и

для бесконечного,

что является определением предела отношения функций.