Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Определение 14.1(4)



Может оказаться, что функция (x), называемая первой производной, тоже имеет производную ((x))¢. Эта производная называется второй производной функции f(x) и обозначается f¢¢(x). Если f есть координата движущейся точки и является функцией времени, то мгновенная скорость точки в момент времени t равна (t), а ускорение равно f¢¢(t).

Вторая производная также может быть функцией, определенной на некотором множестве. Если эта функция имеет производную, то эта производная называется третьей производной функции f(x) и обозначается f¢¢¢(x).

Если определена n-я производная f (n)(x) и существует её произ­водная, то она называется (n+1)-й производной функции f(x): f (n + 1)(x) = (f(n)(x))¢.

Все производные, начиная со второй, называются производными высших порядков.

Для обозначения производных порядка выше третьего вместо нескольких штрихов производной используют (n) для производной порядка n.

 

Пример 14.1 (2).

 

Найти