Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Определение длины отрезка и углов его наклона к плоскостям проекций



Рис. 4.6. Определение длины отрезка и углов наклона
к плоскостям проекций

На рис. 4.6 показан пример определения длины отрезка АВ и углов наклона его к плоскостям проекций.

Длина отрезка АВ равна гипотенузе этого треугольника, катетами которого являются горизонтальная проекция отрезка А1В1 и разность координат z точек А и В (Δz = zA- zB).

Как известно, угол наклона прямой к плоскости равен углу между этой прямой АВ и ее проекцией на плоскость (А1В1).

Следовательно, угол Δ АВВ', лежащий против катета Δz, равен углу наклона отрезка АВ и горизонтальной плоскости проекций π1 (угол α°).

Аналогично рассуждая (рис. 4.6), можно показать, что длина отрезка АВ равна гипотенузе треугольника, катетами которого являются фронтальная проекция отрезка А2В2 и разность координат Y точек А и В (ΔY =YA- YB).

Угол этого треугольника, лежащий против катета ΔY, равен углу наклона отрезка АВ к фронтальной плоскости проекций π2 (угол β°).

По аналогии длина отрезка АВ может быть определена и как гипотенуза треугольника, катеты которого профильная проекция отрезка А3В3 и разность координат Х (Δ Х = ХА - ХВ) точек А и В. Угол γ° этого треугольника, лежащий против катета Δ Х, определяет угол наклона отрезка АВ к профильной плоскости проекций π3. (рис. 4.6).

Линии наибольшего наклона (ската)

Линией наибольшего наклона (ската) плоскости γ называется прямая g, принадлежащая этой плоскости и перпендикулярная ее линиям уровня: горизонтали h и фронтали f (рис. 4.7).

На комплексном чертеже горизонтальная проекция линии наибольшего наклона перпендикулярна горизонтальной проекции горизонтали этой плоскости, а фронтальная - фронтальной проекции фронтали.

Главным свойством этой линии наибольшего ската является то, что она образует с горизонтальной плоскостью проекций π1 угол α°, равный углу наклона плоскости γ к плоскости π1.

Рис. 4.7. Пример построения линии наибольшего наклона

Это свойство линии наибольшего наклона (ската) используется для определения углов наклона плоскостей к плоскостям проекций.

Вопросы для самоконтроля

· 1. Назовите условия перпендикулярности прямых линий на комплексном чертеже.

· 2. Назовите условия перпендикулярности прямой к плоскости на комплексном чертеже.

· 3. Какова сущность способа прямоугольного треугольника?

· 4. Какое свойство линии наибольшего наклона является основным?

· 5. Как можно определить действительную величину отрезка, находящегося в общем положении по отношению к плоскостям проекций?

· 6. Как определяется угол наклона плоскости к плоскостям проекций?

 




Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.