Мои Конспекты
Главная | Обратная связь

...

Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Скрещивающиеся прямые.





Помощь в ✍️ написании работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Это прямые не параллельные и не пресекающиеся между собой. Эти прямые

не имеют общей точки и не лежат в одной плоскости.

12

3 2 º 4 2

 
 


a 2 22 b2

 

 

X 1.2

4 1

 

b 1

a 1 1 1 º 2 1 31

 

 

На рисунке приведен чертеж скрещивающихся прямых a·b . Эти прямые не имеют общих точек лежащих на одной линии связи. В этом случае нас будет интересовать какая прямая проходит выше, а какая ниже или какая прямая ближе к наблюдателю, а как дальше.Для этого рассмотрим точки у которых горизонтальные (1,2) или фронтальный (3,4) проекции совпадают, а другие нет. Такие точки называются конкурирующими. Этими точками пользуются для определения видимости.

Например, если посмотреть на горизонтальную проекцию прямых не ясно какая

точка выше 1 или 2 ? Однако, достаточно провести линию связи на фронтальную проекцию и вы увидите, что точка 1 принадлежащая прямой bнаходится выше, следовательно прямая b проходит выше прямой а.

Воспользовавшись точками 3 и4 определим какая из прямых ближе к нам.

Проведя линию проекционной связи видим , что точка 3 принадлежащая прямой b

ближе к нам и соответственно дальше от фронтальной плоскости проекций , чем

точка 4. Умение определять какая точка принадлежащая прямой или плоскости видима потребуется для решения последующих задач.

 

Доверь свою работу ✍️ кандидату наук!
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой



Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.