Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Если прямая не параллельна плоскости, то она пересекает ее под тем или иным углом.



Задача на пересечение прямой с плоскостью является одной из основных задач.

Алгоритм или план решения таких задач будет следующий.

1) Заключаем отрезок прямой во вспомогательную проецирующую плоскость и находим линию пересечения плоскостей.

2) Находим точку пересечения отрезка прямой с линией пересечения плоскостей, которая будет искомой точкой пересечения прямой с заданной плоскостью.

3) Определяем видимость отрезка прямой используя метод конкурирующих точек.

 

Например. Отрезок DE общего положения пересекает плоскость общего положения АВС .

 

T2 D2 B2

3 2 12

K 2

A2 22 C2

42

E2

 

 

E1

 
 


11 B1

 
 


K1

A 1

 

D1 31º 41 21 C1

 

 

Заключаем отрезок DE во фронтально проецирующую плоскость Т .

Находим проекции линии пересечения 1,2, сначала фронтальную проекцию 12, 22 , а затем горизонтальную 11,21. Находим горизонтальную проекцию точки К1, а затем фронтальную К2.

 

Для определения видимости воспользуемся конкурирующими точками 3 и 4.

На горизонтальной проекции точка 31 принадлежащая прямой накладывается на точку 41 принадлежащую плоскости, однако достаточно по линии проекционной связи подняться на фронтальную плоскость проекций и видим, что точка 32 выше точки 42. Значит до точки пересечения с плоскостью прямая на горизонтальной проекции видима.

Примените самостоятельно этот метод для определения видимости фронтальной проекции прямой.

 




Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.