Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Синтез АТФ при полном окислении пальмитиновой кислоты



β-Окисление Количество молекул АТФ
7 NADH (от пальмитоил-КоА до ацетил-КоА), окисление каждой молекулы кофермента в ЦПЭ обеспечивает синтез 3 молекул АТФ
7 FADHa, окисление каждой молекулы кофермента в ЦПЭ обеспечивает синтез 2 молекул АТФ
Окисление каждой из 8 молекул ацетил-КоА в ЦТК обеспечивает синтез 12 молекул АТФ
Суммарное количество молекул АТФ, синтезированных при окислении одной молекулы пальмитоил-КоА

 

Во многих тканях окисление жирных кислот - важный источник энергии. Это ткани с высокой активностью ферментов ЦТК и дыхательной цепи - клетки красных скелетных мышц, сердечная мышца, почки. Эритроциты, в которых отсутствуют митохондрии, не могут окислять жирные кислоты. Жирные кислоты не служат источником энергии для мозга и других нервных тканей, так как жирные кислоты не проходят через гематоэнцефалический барьер, как и другие гидрофобные вещества. В экспериментах показано, что скорость обмена жирных кислот в нервной ткани существенно меньше, чем в других тканях.

 

Еще проще можно посчитать по формуле:

 

 

n– количество С-атомов в жирной кислоте;

n/2 – количество молекул ацетил-КоА, образованных в процессе β-окисления;

12 – количество АТФ, синтезирующихся при окислении ацетил-КоА в ЦТК;

(n/2 – 1)– количество циклов β-окисления;

5 – количество молекул АТФ, образованных в каждом цикле за счёт двух реакций дегидрирования;

1 – затрата 1 молекулы АТФ на активацию жирной кислоты

 

Вопрос 27. Судьба ацетил-КоА

(Из лекции) здесь без подробностей. В след вопросах будет освещено:

1) В ЦТК – при этом образуется 12 молекул АТФ(см пред вопрос).

2) Жирные кислоты - Ацетил-КоА в цитоплазме служит исходным субстратом для их синтеза

3) Синтез кетоновых тел

4) Биосинтез холестерина.

 

Вопрос 28. Локализация ферментов b-окисления жирных кислот. Транспорт жир­ных кислот в митохондрии. Карнитин-ацилтрансфераза.

Как уже было сказано, биосинтез жирных кислот протекает в цитозоле, а окисление - в митохондриях.

Ферменты:

1)Ацил-КоА синтетазы (необходимы для активации жирных кислот) находятся как в цитозоле, так и в матриксе митохондрий. Эти ферменты отличаются по специфичности к жирным кислотам с различной длиной углеводородной цепи. Жирные кислоты с короткой и средней длиной цепи (от 4 до 12 атомов углерода) могут проникать в матрикс митохондрий путём диффузии. Активация этих жирных кислот происходит в матриксе митохондрий. Жирные кислоты с длинной цепью, которые преобладают в организме человека (от 12 до 20 атомов углерода), активируются ацил-КоА синтетазами, расположенными на внешней мембране митохондрий.

 

Транспорт жирных кислот с длинной углеводородной цепью в митохондриях

 

β-Окисление жирных кислот, происходит в матриксе митохондрий, поэтому после активации жирные кислоты должны транспортироваться внутрь митохондрий. Жирные кислоты с длинной углеводородной цепью переносятся через плотную внутреннюю мембрану митохондрий с помощью карнитина. Карнитин поступает с пищей или синтезируется из незаменимых аминокислот лизина и метионина. В реакциях синтеза карнитина участвует витамин С (аскорбиновая кислота).

 

В наружной мембране митохондрий находится фермент карнитинацилтрансфераза I (карнитин-пальмитоилтрансфераза I), катализирующий реакцию с образованием ацилкарнитина.

 

Образовавшийся ацилкарнитин проходит через межмембранное пространство к наружной стороне внутренней мембраны и транспортируется с помощью карнитинацилкарнитинтранс-локазы на внутреннюю поверхность внутренней мембраны митохондрий, где фермент карнитинацилтрансфераза II катализирует перенос ацила на внутримитохондриальный КоА (рис. 8-26). Таким образом, ацил-КоА становится доступным для ферментов β-окисления. Свободный карнитин возвращается на цитозольную сторону внутренней мембраны митохондрий той же транслоказой.

 

 

 

Рис. 8-26. Перенос жирных кислот с длинным углеводородным радикалом через мембраны митохондрий. Фермент карнитинацилтрансфераза I - регуляторный фермент β-окисления; ингибируется малонил-КоА - промежуточным метаболитом, образующимся при биосинтезе жирных кислот. * - карнитинацилкарнитинтранслоказа.

Теперь по формулам:

 

 

 

На внутренней поверхности внутренней мембраны находится фермент карнитинацил трансфераза II, катализирующий обратный перенос ацила с карнитина на внутримитохондриальный КоА. После этого ацил-КоА включается в реакции β-окисления.




Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.