Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Начальные и граничные условия



Продуктивный пласт или выделенную из него часть можно рассматривать как некоторую область пространства, ограниченную поверхностями - границами. Границы могут быть непроницаемыми для жидкостей или газов, например кровля и подошва пласта, сбросы и поверхности выклинивания. Граничной поверхностью является также поверхность, по которой пласт сообщается с областью питания (с дневной поверхностью, с естественным водоемом), это так называемый контур питания; стенка скважины является внутренней границей пласта.

Чтобы получить решение системы уравнений, к ней необходимо добавить начальные и граничные (краевые) условия.

Начальное условие заключается в задании искомой функции во всей области в некоторый момент времени, принимаемый за начальный. Например, если искомой функцией является пластовое давление, то начальное условие может иметь вид

p = pо(х, у, z) при t = 0, (1.57)

то есть в начальный момент задается распределение давления во всем пласте.

Если в начальный момент пласт невозмущен, то начальное условие примет вид

р = рk = const при t = 0. (1.58)

Граничные (краевые) условия задаются на границах пласта. Число граничных условий должно быть равно порядку дифференциального уравнения по координатам.

Возможны следующие граничные условия.

Граничные условия первого рода. На границе задаются значения давления:

рêг = р(Г, t). (1.59)

Граничные условия второго рода. На границе задаются значения нормальной скорости к границе:

unêг = un(Г, t). (1.60)

Так, как по закону Дарси скорость фильтрации связана с градиентом давления, то это граничное условие можно записать в следующем виде:

(1.61)

Граничные условия третьего рода. Это граничное условие является комбинацией первых двух и в практике встречается редко.

(1.62)

Рассмотрим граничные условия в случае притока к галерее. Галерея имеет две границы, одна при x = 0, а вторая (контур питания) x = L. Поэтому необходимо поставит по одному граничному условию на каждой границе. На контуре питания ставится условие постоянство давления или условие непроницаемости границы

p(L, t) = pk или ux(L, t) = 0. (1.63)

Скорость фильтрации связана с градиентом давления, поэтому второе граничное условие записывается в виде:

(1.64)

На самой галерее ставится условие постоянство давления или задается расход, с которым работает галерея Q0.

(1.65)

Второе граничное условие можно записать в виде:

(1.66)

Рассмотрим граничные условия в случае притока к скважине. В этом случае также имеются две границы, одна на боковой поверхности скважины при r = rc, а вторая на контуре питания r = Rk. На контуре питания ставится условие постоянство давления или условие непроницаемости границы

p(Rk, t) = pk или ur(Rk, t) = 0. (1.67)

Скорость фильтрации связана с градиентом давления, поэтому второе граничное условие записывается в виде:

(1.68)

На самой скважине ставится условие постоянство давления или задается расход Q0, с которым она работает

(1.69)

Второе граничное условие можно записать в виде:

(1.70)

Примеры и задачи

Пример 1.1.

Определить скорость фильтрации и действительная скорость движения газа у стенки гидродинамически совершенной скважины, если известно, что толщина пласта h = 10 м, коэффициент пористости m = 12%, радиус скважины rc = 0,1 м, массовый дебит газовой скважины Qm = 50 т/сут, плотность газа при атмосферном давлении (pат = 0,1013 МПа) r = 0,8 кг/м3. Абсолютное давление на скважине равно pс = 10 МПа.

Решение:

Массовый расход в системе СИ равен

Qm=50 т/сут = 50 ·1000/86400 = 0,589 кг/с.

По уравнению неразрывности потока при установившемся движении массовый расход в любом поперечном сечении потока одинаков. Поэтому массовый расход газа на боковой поверхности скважины будет равен:

Q = Qm = 0,589 кг/с.

Плотность газа в этом поперечном сечении равна:

rс = rат pc/pат = 0,8·10·106/0,1013·106 = 80,0 кг/м3,

Приток к скважине представляет собой плоскорадиальный поток. Поэтому площадь поперечного сечения равна w = 2 p rc h. Объемный расход на забое скважины связан с массовым расходом соотношением Qс = Qm/rс. Тогда скорость фильтрации будет определяться:

Действительная скорость движения нефти

v = u/m = 1,17 10-3/0,12 = 9,77 10-3 м/с.

Ответ: u = 1,17 10-3 м/с. v = 9,77 10-3 м/с.

Пример 1.2.

Вертикальная труба, содержащая пористую среду, заполнена водой. Верхний и нижний торец трубы открыт. Определить скорость фильтрации, если известно, что коэффициент проницаемости k = 0,2 мкм2, а динамическая вязкость и плотность воды m = 0,98 мПа с, r = 1000 кг/м3.

Решение:

Выберем плоскость сравнения по нижнему торцу трубы. Длину трубы обозначим через L. Приведенные давления на верхнем торце соответственно равны

p1* = p1 + r g z1 = pат + r g L,

p2* = p2 + r g z2 = pат + r g 0 = pат.

Тогда по закону Дарси:

Ответ: u = 2,00×10-6 м/с.

Пример 1.3.

Давление вокруг скважины в горизонтальном пласте распределяется по закону

Определить скорость фильтрации и дебит на скважине и на расстоянии 20 м, если известно, что коэффициент проницаемости k = 0,2 мкм2, динамическая вязкость нефти m = 20 мПа×с и толщина пласта h = 7 м. Радиус скважины и контура питания соответственно равны rc = 0,1 и Rк = 100 м. Давление на скважины и контуре питания pc = 10 МПа и pк = 20 МПа.

Решение:

В горизонтальном пласте приведенное давление совпадает с абсолютным. По закону Дарси скорость фильтрации определяется:

Тогда скорости фильтрации будут равны:

Дебита в данных сечениях будут равны

Q1 = u1 2 p r1 h = - 1,44×10-4×2×3,14×0,1×7 = - 6,33×10-4 м/с.

Q2 = u2 2 p r2 h = - 0,72×10-5×2×3,14×20×7 = - 6,33×10-4 м3/с.

Знак дебита отрицательный так, как вектор скорости направлен против выбранной оси - радиуса.

Ответ: u1 = - 1,44×10-4 м/с, u2 = - 0,72×10-5 м/с, Q = - 6,33×10-4 м3/с.

Пример 1.4.

Рис. 1.4. Карта изобар

На Рис. 1.4 показана карта изобар в горизонтальном пласте. Определить скорость фильтрации в направлении вектора n1, если известно, что коэффициент проницаемости k = 0,250 мкм2, динамическая вязкость нефти m = 20 мПа×с. Давления на карте изобар – МПа.

Решение:

Выбираем две точки на двух ближайших изобарах вдоль вектора. Давление на изобаре вдоль вектора обозначим p(s + Δs) = 17 МПа. Давление на изобаре, откуда выходит вектор p(s) = 16 МПа. Находим расстояние между этими точками DS = 20 . По закону Дарси скорость фильтрации u определяется:

Знак скорости отрицательный, поэтому жидкость фильтруется в направлении обратном направлению стрелки.

Ответ: uср = -3,12×10-7 м/с.

Пример 1.5.

Дебит газовой скважины, приведенный к атмосферному давлению при стандартных условиях Qaт.ст = 2 млн. м3/сут, абсолютное давление на забое рс = 12 МПа, толщина пласта h = 10 м, коэффициент пористости пласта m = 12%, коэффициент проницаемости k = 0,5 мкм2, плотность газа при стандартных условиях rст = 0,750 кг/м3, динамический коэффициент вязкости в пластовых условиях m = 0,015 мПа×с, температура пласта 45°С.

Определить, нарушается ли закону Дарси в призабойной зоне совершенной скважины радиусом гс = 0,10 м.

Решение:

Определим массовый дебит газа:

Площадь поперечного сечения на забое скважины

Число Рейнольдса

Ответ: в призабойной зоне закон Дарси нарушается.

Задача 1.1

По керну диаметром 2 см и длиной 5 см за десять минут прокачано 0,6 см3 воды. Абсолютное давление на входе 0,5 МПа, а на выходе 0,2 МПа. Определить действительную скорость и скорость фильтрации на входе в керн, если пористость керна 10%.

Задача 1.2

По керну диаметром 2 см и длиной 5 см за десять минут прокачано 600 см3 газа при стандартных условиях. Абсолютное давление на входе 0,5 МПа, а на выходе 0,1 МПа. Определить действительную скорость и скорость фильтрации на входе в керн, если пористость керна 10%.

Задача 1.3

По керну диаметром 2 см и длиной 5 см за десять минут прокачано 600 см3 газа при стандартных условиях. Абсолютное давление на входе 0,5 МПа, а на выходе 0,1 МПа. Определить действительную скорость и скорость фильтрации на выходе из керна, если пористость керна 10%.

Задача 1.4

Нефтяная галерея в пласте толщиной 10 м за месяц дает 8000 тонн нефти плотностью 780 кг/м3. Ширина галерея 100 м, длина 300 м, пористость пласта 15%. Определить действительную скорость и скорость фильтрации на галерее.

Задача 1.5

Газовая галерея в пласте толщиной 12 м за месяц дает 9000 тонн газа плотностью, при атмосферном давлении, 0,75 кг/м3. Ширина галерея 100 м, длина 300 м, пористость пласта 15%, давление на галерее pг = 4 МПа. Определить действительную скорость и скорость фильтрации на галерее.

Задача 1.6

Газовая галерея в пласте толщиной 15 м за сутки дает 800 тыс. м3 газа плотностью, при атмосферном давлении, 0,75 кг/м3. Ширина галерея 100 м, длина 300 м, пористость пласта 15%, давление на контуре питания pк = 8 МПа. Определить действительную скорость и скорость фильтрации на контуре питания.

Задача 1.7

Нефтяная совершенная скважина радиусом 0,1 м в пласте толщиной 10 м за один час дает 2 м3 нефти. Определить скорость фильтрации и действительную скорость на скважине, если пористость пласта 15%,.

Задача 1.8

Нефтяная скважина радиусом 0,1 м в пласте толщиной 8 м за 1 час дает 3 м3 нефти и вскрывает пласт на 3 метра. Определить скорость фильтрации и действительную скорость на скважине, пористость пласта 20%

Задача 1.9

Определить среднее значение скорости фильтрации на боковой поверхности гидродинамически несовершенной по характеру вскрытия нефтяной скважины, если толщина пласта h = 25 м, плотность перфорации nп = 10 отв/м с диаметром отверстий dп = 1 см, дебит жидкости Q = 250 мЗ/сут.

Задача 1.10

За десять дней из скважины добыт объем газа (приведенный к атмосферному давлению и пластовой температуре) Wат = 15 млн. м3, радиус контура питания rk = 200 м, толщина пласта h = 20 м, абсолютное давление газа на контуре pk = 15 МПа. Скорость фильтрации и действительную скорость газа на контуре питания.

Задача 1.11

Определить скорость фильтрации и среднюю скорость движения при плоскорадиальной фильтрации газа к скважине в точке на расстоянии r = 150 м от центра скважины, если давление в этой точке равно р = 8 МПа, толщина пласта h = 12 м, пористость его m = 20%, а приведенный к атмосферному давлению и пластовой температуре дебит Qат = 2·106 м3/сут, pат = 0,1 МПа.

Задача 1.12

Газовая скважина радиусом 0,1 м в пласте толщиной 20 м за сутки дает 80 тонн газа плотностью ρат = 0,8 кг/м3 и вскрывает пласт на 3 метра. Скважина несовершенна по характеру вскрытия и вскрытая часть скважины имеет плотность перфорации nп = 10 отв/м с диаметром отверстий dп = 1 см. Определить скорость фильтрации и действительную скорость на скважине, если давление на скважине 10 МПа, пористость пласта 20%.

Задача 1.13

Определить коэффициент пористости, зная, что действительная скорость движения через образец, определяемая при помощи индикатора, равна v = 5·l0‑3 см/с, коэффициент проницаемости k = 0,2 мкм2, вязкость жидкости μ = 4 мПа·с и разность давлений Dр = 2 МПа при длине образца L = 15 см.

Указание: Найти скорость фильтрации и сравнить с действительной скоростью.

Задача 1.14

В нефтяной галерее давление распределяется по закону p(x) = pk ‑ (pk ‑ pг) x/L. Определить скорость фильтрации на расстоянии x = 50 м от контура питания, если давление на контуре питания pк = 8 МПа, давление на галерее pг = 4 МПа, длина галереи 200 м, проницаемости пласта k = 1 мкм2, динамический коэффициент вязкости жидкости μ = 2 мПа·с.

Задача 1.15

В газовой галерее давление распределяется по закону p(x)2 = pk 2‑ (pk2 ‑ pг2) x/L. Определить скорость фильтрации на расстоянии x = 50 м от контура питания, если давление на контуре питания pк = 9 МПа, давление на галерее pг = 3 МПа, длина галереи 200 м, проницаемости пласта k = 0,1 мкм2, динамический коэффициент вязкости газа μ = 0,015 мПа·с.

Задача 1.16

Вокруг нефтяной скважины давление меняется по закону p(r) = pk ‑ (pk ‑ pc) ln(Rk/r)/ln(Rk/rc). Определить скорость фильтрации на расстоянии r = 10 м от скважины, если давление на контуре питания pк = 18 МПа, давление на скважине pс = 14 МПа, радиус контура питания 100 м, проницаемости пласта k = 0,3 мкм2, динамический коэффициент вязкости нефти μ = 6,28 мПа·с.

Задача 1.17

Вокруг газовой скважины давление меняется по закону p2(r) = p2c + (p2k ‑ p2c) ln(r/rc)/ln(Rk/rc). Определить скорость фильтрации на расстоянии r = 10 м от скважины, если давление на контуре питания pк = 12 МПа, давление на скважине pс = 6 МПа, радиус контура питания 100 м, проницаемости пласта k = 0,4 мкм2, динамический коэффициент вязкости газа μ = 0,02 мПа·с.

Задача 1.18

Модель пласта представляет собой трубу диаметром 200 мм и длиной 2 м заполненную песком. Труба установлена вертикально. На верхнем конце модели поддерживается манометрическое давление 30 кПа, а нижний конец модели открыт. Определить скорость фильтрации и расход воды, если проницаемости модели k = 0,4 мкм2, динамический коэффициент вязкости воды μ = 1 мПа·с.

Задача 1.19

Рис. 1.5.

Определить величину и направление скорости фильтрации в точке А (Рис. 1.5.), если проницаемость пласта равна 0,12 мкм2, а вязкость нефти 15 мПа·с. Нарисовать вектор скоростей.

Указание. Найти скорости фильтрации вдоль осей x и y.

Задача 1.20

Определить величину и направление скорости фильтрации в точке B (Рис. 1.5.), если проницаемость пласта равна 0,15 мкм2, а вязкость нефти 15 мПа·с. Нарисовать вектор скоростей.

Указание. Найти скорости фильтрации вдоль осей x и y.

Задача 1.21

Определить величину и направление скорости фильтрации в точке C (Рис. 1.5.), если проницаемость пласта равна 0,16 мкм2, а вязкость нефти 15 мПа·с. Нарисовать вектор скоростей.

Указание. Найти скорости фильтрации вдоль осей x и y.

Задача 1.22

Определит приведенное относительно ВНК (водонефтяного контакта) давление, в трех наблюдательных скважинах. Манометрические давления в скважинах pм1 = 18,3 МПа, pм2 = 18,7 МПа, pм3 = 17,3 МПа. Глубины спуска манометров H1 = 2180 м, H2 = 2280 м, H3 = 2020 м. Водонефтяной контакт находится на глубине 2320 м. Укажите направление скоростей фильтрации между скважинами. Плотность нефти принять равной 750 кг/м3.

Задача 1.23

Вокруг двух скважин приведенное давление меняется по закону p(x,y) = pk + Dp1 ln((x-a)2 + y2) + Dp2 ln((x+a)2 + y2) . Определить скорость фильтрации в точке с координатами x = 20 м, y = 100 м, если Dp1 = Dp2 = 2,6 МПа, a = 100 м, проницаемости пласта 0,4 мкм2, динамический коэффициент вязкости нефти μ = 22 мПа·с.

Задача 1.24

Вокруг двух скважин приведенное давление меняется по закону p(x,y) = pk + Dp1 ln((x-a)2 + y2) + Dp2 ln((x+a)2 + y2) . Определить скорость фильтрации в точке с координатами x = 20 м, y = 100 м, если Dp1 = 4,5 МПа, Dp2 = - 4,5 МПа, a = 100 м, проницаемости пласта 0,24 мкм2, динамический коэффициент вязкости нефти μ = 12 мПа·с.

Задача 1.25

Определить значение числа Рейнольдса у стенки гидродинамически несовершенной по характеру вскрытия нефтяной скважины, если известно, что эксплуатационная колонна перфорирована, на каждом погонном метре колонны прострелено 10 отверстий диаметром dп = 10 мм, толщина пласта h = 15 м, проницаемость пласта k = мкм2, пористость его m = 18%, коэффициент вязкости нефти μ = 4 мПа·с, плотность нефти ρ = 870 кг/м3 и дебит скважины составляет 140 м3/сут.




Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.