Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Плоскорадиальный поток идеального газа при нарушении закона Дарси



Вблизи большинства газовых скважин происходит нарушение закона Дарси, поэтому расчеты, связанные с разработкой газовые месторождений, а также с исследованием скважин, проводят обычно по нелинейным законам фильтрации. При этом нельзя использовать для расчета дебита скважины формулу Дюпюи и нельзя использовать аналогию между фильтрацией жидкости и газа, так как они выведены с учетом движения по закону Дарси.

Пусть в газовом пласте толщиной h и проницаемостью k пробурена скважина радиусом rc. На скважине поддерживается давление pc, а на контуре питания радиусом Rk давление pk. В пласте происходит фильтрация газа по нелинейному (двухчленному) закону фильтрации. Необходимо рассчитать дебит скважины и распределение давления вокруг скважины. Математически эта задача описывается уравнением неразрывности потока

(3.27)

Нелинейным законом фильтрации:

(3.28)

Зависимостью плотностью газа от давления

(3.29)

И граничными условиями:

(3.30)

Эту систему уравнений будем решать методом исключения переменных. Из уравнения неразрывности найдем скорость фильтрации и подставим в нелинейный закон фильтрации. При этом исключается скорость фильтрации из уравнения фильтрации:

. (3.31)

Выразим массовый расход через объемный расход при атмосферном давлении, а плотность через давление

. (3.32)

Полеченное дифференциальное уравнение первого порядка будем интегрировать методом разделения переменных. Для этого умножим уравнение на 2 p dr:

. (3.33)

Для того, чтобы найти распределение давления вокруг скважины будем интегрировать это уравнение по давлению от давления на скважине pc до текущего давления p(r), а по радиусу от радиуса скважины rc до текущего радиуса:

(3.34)

Для нахождения дебита скважины воспользуемся вторым граничным условием – заданным давлением pk на контуре питания. Пренебрегая 1/Rk во втором слагаемом (1/Rk<<1/rc) получим:

. (3.35)

Обычно вводят обозначения

. (3.36)

Тогда уравнение расчета дебита примет вид

. (3.37)

Коэффициенты “a” и “b” называются коэффициентами фильтрационных сопротивлений и определяются опытным путем по данным исследования скважины при установившихся режимах. Для нахождения дебита скважины по известным значениям “a”, “b” и разницы квадратов давлений необходимо решить квадратное уравнение:

. (3.38)

В этом уравнении выбираем знак + так, как дебит скважины не может быть отрицательным. При b ® 0 последнее уравнение приводит к неопределенности типа 0/0, поэтому преобразуем это уравнение к виду, в котором этой неопределенности нет:

. (3.39)

 




Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.