Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Глава 3. Стихия чисел



3.1. Числа с именем.

Числа Мерсенна - = ,р -простое число. При некоторых значениях р также простое число. Найдено около тридцати чисел Мерсенна, наибольшее из которых имеет в своей записи более ста тысяч цифр.

Числа Ферма - + 1 k . При некоторых значениях k - простые числа. , , - простые числа. [1]

Числа Евклида = ▪( , k N Рисунок 4. Числа Фибоначчи.

Числа Фибоначчи – члены последовательности ( , где = 1, , последующие члены определяются рекуррентной формулой , k = 1,2, …Сказанное выше подтверждает рисунок 4. Там же.

3.2. Числа с прилагательными

Обращенное число –записанное теми же цифрами, но расположенными в обратном порядке. Например, 3805, обращенное – 5083.

Палиндромическое число – равное обращенному. Например, 121, 5995.

Дружественные числа – пара чисел, обладающих таким свойством: сумма собственных делителей первого из них равна второму числу, а сумма собственных делителей второго числа равна первому числу. Например, сумма делителей числа 220 равна 1 + 2 + 4 + 5 + 10 +11 +20 + 22 +44 + 55 + 110 = 284, а сумма делителей числа 284 равна 1 + 2 + 4 + 71 + 142 = 220,поэтому числа 220 и 284 – дружественная пара.

Вторая дружественная пара 1184 и 1210 была найдена в 1867 году шестнадцатилетним итальянцем Б. Паганини. Леонард Эйлер предложил пять способов отыскания дружественных чисел. Эту работу продолжили математики следующих поколений. В настоящее время известно 1100 пар дружественных чисел, найденных либо хитроумными способами, либо перебором на компьютере. Любопытно, что на долю компьютера в этом списке досталось совсем немного чисел – большинство из них было открыто математиками вручную.

n – угольное число– общий вид: = ((k-1)(n – 2) +2), k = 1,2, …

В частности: треугольное число, четырехугольное число, пятиуголь- ное число.

Сказанное выше подтверждает рисунок 6. [1]




Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.