Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Прохождение частицы через потенциальный барьер. Туннельный эффект.



Рассмотрим простейший потенциальный барьер прямоугольной формы. Для одномерного (по оси х) движения частицы.

ì∞,x<0 (для области 1)

U(x)=í0,0≤x≤l (для области 2)

î0,x>1 (для области 3)

где l-ширина ямы, а энергия отсчитывается от ее дна, U-высота. Частица, обладая энергией Е, либо беспрепятственно пройдет над барьером( при Е>U), либо отразится от него (при Е<U) и будет двигаться в обратную сторону. Для микрочастица, даже при Е>U, имеется вероятность отражения от барьера, и при Е<U есть вероятность проникновения через барьер. Это слудет из решения ур-ния Шредингера, описывающего движение микрочастицы

для областей 1 и 3 k2=2mE/h2 ; для области 2 q2=2m(E-U)/h2

Общие решения этих диф.уравнений:

Ψ1(x)=A1eikx+B1e-ikx(для области 1);Ψ2(x)=A2eiqx+B2e-iqx(для области2) Ψ3(x)=A3eikx+B3e-ikx(для области 3).

В частности, для области 1 полная волновая, будет иметь вид ψ1(x,t)=ψ1(x)e-(i/h)Et=A1e-(i/h)(Et-px)+B1x-(i/h)(Et+px) ( в этом выражении первый член представляет собой плоскую волну вдоль х, другой – волну, распространяющаяся в обратную сторону). В области 3 есть только прошедшая сквозь барьер волна и поэтому В3=0.Для области 2 q=iβ;β=√2m(E-U) /h.

Получили Ψ1(x)=A1eikx+B1e-ikx, Ψ2(x)=A2e-βx+B2eβx3(x)=A3eikx

Качественный характер функций ψ1(х),ψ2(х),ψ3(х)(см.рис2), откуда следует, что волновая функция не равна нулю и внутри барьера, а в области3, если барьер не очень широк, будет опять иметь вид волн де Бройля с тем же импульсом, т.е. с той же частотой, но с меньшей амплитудой. Т.о. приходим к явлению – туннельный эффект, когда микрочастица может пройти сквозь потенциальный барьер.

15.Уравнение Шредингера для гармонического осциллятора и анализ его решений.

Линейный гармонический осциллятор – система, совершающая одномерное движение под действием квазиупругой силы – является моделью, используемой во многих задачах классической и квантовой теории. Пружинный, физический и математический маятники – примеры классических гармонических осцилляторов. Потенциальная энергия осциллятора равна

U=mω02x2/2 где ω0- собственная частота осциллятора,m- масса частицы.

Гармонический осциллятор в квантовой механике – квантовый осциллятор – описывается уравнением Шредингера, учитывающим выражение для потенциальной энергии. Тогда стационарные состояния квантового осциллятора определяются ур-нием Шредингера вида

где Е- полная энергия осциллятора. В теории дифференциальных уравнений доказывается, что это уравнение решается только при собственных значениях энергии En=(n+½)ħω0. Эта формула показывает, что энергия квантового осциллятора может иметь только дискретные значения, т.е. квантуется. Строгое решение задачи о квантовом осцилляторе приводит еще к отличию от классического рассмотрения. Квантово-механический расчет показывает, что частицу можно обнаружить за пределами дозволенной области, в то время как с классической точки зрения она не может выйти за пределы области. Т.о. имеется отличная от нуля вероятность обнаружить частицу в области, которая является классически запрещенной.

 

 

16, 17.Представление физических величин операторами. Вычисление средних значений физических величин.

А) Оператор координаты. Действие сводится к умножению волновой функции на эту координату: x^y=xy, y^y=yy, z^y=zy или x^=x…

б) Оператор проекций импульса. Выражаются с помощью операторов дифференцирования по соответствующим координатам: P^x=(h/i)(¶/¶x), P^y=(h/i)(¶/¶y), P^z=(h/i)(¶/¶z),­­­­­­`p^={ P^x, P^y, P^z}.

В) Оператор момента импульса:`

L=`r´`p, Lx=ypz-zpy; Ly=zpy-xpz; Lz=xpy-ypx;

L^x=y^p^z-z^p^y=(h/i)(y¶/¶x-z¶/¶y).

Г) Оператор кинетической энергии. Определим T, пользуясь формулой Т=p2/2m, T^=p^2/2m=-h2/2m. Вычисление средних значений: L^y=Ly,<L>=òy*L^ydV, y(r)=Aexp(-r/a)




Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.