Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

ТРАНСПОРТ КИСЛОРОДА КРОВЬЮ



Кислород находится в крови в двух состояниях. Часть (0,3 мл на 100 мл крови или 3 мл/л крови) — в виде физически растворенного газа, а остальная часть (почти 20 мл кислорода/ 100 мл крови или 200 мл/1 л крови) — в виде химически связанного состояния — в связи с гемоглобином. Фракция физически растворенного кислорода играет важную роль: весь кис­лород, который идет из альвеолярного воздуха в кровь или из крови в ткани, проходит ста­дию физического растворения. Только в таком виде кислород может диффундировать. Эту фракцию можно представить как узкую речку, по которой вода бежит с огромной скоро­стью. Растворимость газов в жидкостях подчиняется закону Генри— Дальтона: количество растворенного газа пропорционально парциальному напряжению газа. Коэффициент про­порциональности (коэффициент Бунзена) для кислорода равен 0,024 мл на 1 мл раствори­теля в расчете на 1 атм (760 мм рт. ст.). Вот почему фракция растворенного кислорода так мала. Однако ее можно увеличить. Это бывает необходимо при оперативных вмешательст­вах на «сухом» сердце — без использования аппарата искусственного кровообращения. Еще в 1887 году французский хирург Пеган провел 27 операций в атмосфере чистого кис­лорода, т. е. применил способ насыщения кровью кислорода за счет повышения парциаль­ного напряжения кислорода в крови. Действительно, когда мы дышим чистым кислородом, то парциальное давление в альвеолярном воздухе составляет 760 мм рт. ст. (вместо 100 мм рт. ст.), поэтому повышается почти в 7 раз растворимость кислорода: вместо 3 мл/л — 21 мл/л крови. В настоящее время найдено, что можно без большого ущерба для человека некоторое время ды­шать чистым кислородом под давлением в 3 атмосферы. В этом случае парциальное напряже­ние кислорода в альвеолярном воздухе достигает 3x760=2280 мм рт. ст., а количество рас­творенного кислорода в крови становится в 21 раз больше, чем обычно, т. е. около 65 мл/л. Учитывая, что количество химически связанного кислорода (см. ниже) в этом случае оста­ется таким же, что и при обычном воздухе, to суммарное содержание кислорода в 1 л крови будет равно (200+65)=265 мл. Так как у человека около 5 литров крови, то суммарная при­бавка достаточно ощутима (65x5=325 мл). Если оперативное вмешательство проводить при низкой температуре тела (25—28° С), то потребность в кислороде снижается и вместо 250 мл требуется 50 мл или даже меньше. Естественно, что в таких условиях у хирурга, опери­рующего на «сухом» сердце, появляется больше времени для выполнения оперативного вмешательства.

В настоящее время гипербарическая оксигенация (название процедуры, описанной выше) достаточно широко применяется во многих областях медицины.

Основная масса кислорода при обычном дыхании связана с гемоглобином. Гемоглобин представляет собой белок, состоящий из 4 субъединиц (в среднем с массой по 16000), каж­дая из которых содержит 1 гем. Гем — это протопорфирин, состоящий из 4 пиррольных колец, связанных между собой метановыми мостиками. В центре гема находится двухва­лентное железо.


Когда в среде парциальное напряжение кислорода достаточно велико (60 мм рт. ст. и выше), каждый гем присоединяет к себе по 1 молекуле кислорода- Таким образом, 1 моле­кула гемоглобина присоединяет к себе 4 молекулы кислорода. Бели считать, что 1 г-мол гемоглобина = 64500 г, а 1 г-мол кислорода — 32 г или 22,4 л, тона 1 грамм гемоглобина приходится (32 х 4): 64500 или (22400 мл х 4): 64500 = 1,39 мл кислорода. Эта величина впервые была вычислена Хюффнером и поэтому в научной литературе называется «числом Хюффнера». Однако часто используются и другие значения количества кислорода, присое­диняемого 1 г гемоглобина. Это обусловлено тем, что по-разному оценивается молекуляр­ная масса гемоглобина. В последние годы она принимается за 66800 (а не за 64500); в этом случае эта величина составляет 1,34 мл/г гемоглобина. В наших расчетах используется число 1,34.

Итак, если известно, что в 1 л крови содержится 140 г гемоглобина, то в 1 л такой крови максимально возможное содержание кислорода в химически связанной форме будет равно 140x1,34=187,6 мл.

Реально, однако, количество кислорода, связанного с гемоглобином, зависит от парци­ального напряжения кислорода в крови (или в тканях). Даже при 100 мм рт. ст. не весь гемоглобин, а только 97—98%, способен связывать кислород, т. е. находиться в форме ок-сигемоглобина. При уменьшении парциального напряжения кислорода в среде — количество гемоглобина, находящегося в форме оксигемоглобина, снижается. Например, при 10 мм рт. ст. лишь около 10% молекул гемоглобина находится в связи с кислородом.

КРИВАЯДИССОЦИАЦИИ ОКСИГЕМОГЛОБИНА

Процесс связывания кислорода гемоглобином, отражающий зависимость сродства ге­моглобина к кислороду от парциального напряжения кислорода в среде, являстся'важней-шей характеристикой процесса транспорта кислорода. Впервые эту зависимость теорети­чески рассмотрел Хюффнер. Он считал, что в соответствии с законом действующих масс зависимость должна иметь гиперболический вид. Однако первые же экспериментальные наблюдения, проведенные известным физиологом Бором, показали, что зависимость носит S-образный характер. Гемоглобин как уникальное соединение хорош тем, что там, где он должен захватывать кислород (легкие), там в условиях высокого парциального напряжения (100 мм рт. ст.) он захватывает кислород. Там, где гемоглобин должен отдать кислород (при давлении 40 мм рт. ст.) — он его отдает почти на 60—40% от исходного уровня. Это проис­ходит в тканевых капиллярах. Проходя по тканям, гемоглобин отдает не весь связанный кислород, а только часть его. Например, если кислородная емкость артериальной крови равна 200 мл/л, то венозной крови —160—140 мл/л. Это объясняется тем, что парциальное давление в венозной крови не снижается обычно меньше 40 мм рт. ст., поэтому до 60% гемоглобина находится в форме оксигемоглобина.

Существуют факторы, влияющие на сродство гемоглобина к кислороду. Благодаря этим факторам кислород лучше отдается в тканевых капиллярах и, наоборот, лучше присоединя­ется в капиллярах легких. К этим факторам относятся: температура, концентрация водо­родных ионов, парциальное напряжение углекислого газа и соединение, которое накапли­вается в эритроцитах— 2,3-дифосфоглицерат.

Было показано, что с повышением температуры снижается сродство гемоглобина к кис­лороду и кривая диссоциации оксигемоглобина (зависимость % оксигемоглобина от парци­ального напряжения кислорода в среде) сдвигается вправо. Например, при 20°С, при 40 мм рт. ст. с кислородом связано 70% гемоглобина, а при 37°С — 65%.

Аналогично было замечено, что при повышении концентраций водородных ионов, при повышении парциального напряжения углекислого газа в среде сродство гемоглобина к кислороду снижается. Это явление получило название «эффекта Бора». Все эти факторы имеют место в тканях и поэтому способствуют отдаче кислорода гемоглобином.

Еще в 1909 г. классик физиологии газообмена Джозеф Баркрофт и его сотрудники обна­ружили, что в растворах гемоглобин имеет большее сродство к кислороду, чем в эритроци-


тах, следовательно, что-то, содержащееся в эритроцитах, препятствует связыванию кисло­рода. И лишь в 1967 г. обнаружили это «что-то». Им оказался 2,3-дифосфоглицерат. Это соединение образуется в эритроците при расщеплении глюкозы.

Метаболит глюкозы 2,3-ДФГ снижает сродство гемоглобина к кислороду. У горцев, постоянно испытывающих кислородное голодание из-за низкого парциального давления кислорода, как вариант адаптации к кислородному голоданию вырабатывается механизм, позволяющий повысить отдачу кислорода тканям. Это происходит за счет повышенного образования 2,3-ДФГ в их эритроцитах.




Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.