Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

РЕАБСОРБЦИЯ В ПОЧЕЧНЫХ КАНАЛЬЦАХ



Все ценные, необходимые вещества реабсорбируются в почечных канальцах. Так, на­трий реабсорбируется на 99%, калий — на 90%, кальций — на 99%, магний — на 94%, хлор — на 99%, бикарбонаты — на 99%, фосфаты — на 90%, сульфаты — на 69%, глюкоза (если ее содержание не превышает норму) — на 100%, аминокислоты — на 90%, вода — на 99%, мочевина — на 53%. В итоге, объем конечной мочи достигает 1,0— 1,5 л в сутки. Основная масса молекул реабсорбируется в проксимальном извитом канальце, и меньше — в петле Генле, в дистальном извитом канальце и собирательных трубках. Реабсорбция веществ осу­ществляется с участием различных механизмов, главным из которых является активный транспорт (первично-активный, вторично-активный, эндоцитоз). Поэтому при нарушении энергообразования реабсорбция многих веществ снижается, что приводит к увеличению диуре­за. Если мощность системы реабсорбции недостаточна для полного реабсорбирования вещест­ва, то тогда это вещество появляется в конечной моче, а вместе с ним — дополнительная пор­ция воды, и таким образом возникает полиурия, или повышение диуреза. В частности, это на­блюдается при повышении уровня глюкозы в крови, в результате чего возникает сахарный диа­бет, или сахарное мочеизнурение.

Реабсорбцняглюкозы. Осуществляется за счет вторично-активного транспорта: на апи­кальной поверхности мембраны имеется переносчик, который обладает большим сродст­вом к глюкозе и ионам натрия. Когда глюкоза и натрий оккупируют этот переносчик, то в силу градиента концентрации для ионов натрия переносчик вместе с глюкозой и натрием пересекает плазматическую мембрану и входит внутрь клетки, где комплекс распадается на составные компоненты. Благодаря этому внутри почечного эпителия создается высокая концентрация глюкозы (больше, чем в плазме, т. е. выше 3,5 ммоль/л), поэтому в дальней­шем по градиенту концентрации глюкоза покидает почечный эпителий, переходит в интер-стиций (с участием переносчика за счет облегченной диффузии), а далее — уходит в крово­ток. За 1 минуту почки мужчин могут реабсорбировать не более 375 мг глюкозы, а почки


Рис. 100. Состав мочи.

Процессы, происходящие в канальцах при прохождении по ним различных компонентов мочи.

376


женщин — около 300 мг. Поэтому, при повышении концентрации глюкозы в крови, напри­мер, в 3 раза по сравнению с нормой (в норме — 5,5 ммоль/л или 1,2 мг/мл, в данном приме­ре — 16,5 ммоль/л или 3,6 мг/мл) при нормальном объеме фильтрации, равном 120 мл/мин, в фильтрат за 1 минуту будет проходить 120 х 3,6 мг/мл = 432 мг глюкозы в 1 минуту. Так как мощность системы транспорта глюкозы ограничена, то у мужчины в мочу будет пере­ходить 432 - 375 = 57 мг/минуту, а у женщин — 432 - 300 =132 мг/минуту глюкозы.

Таким образом, в норме глюкоза практически отсутствует в моче (за сутки ее теряется не более 130 мг), а при гипергликемии возникает глюкозурия.

Еще раз следует подчеркнуть, что транспорт глюкозы — процесс активный, энергия на транспорт глюкозы используется на создание натриевого градиента, т. е. для работы натри­евого (натрий-калиевого, натрий-водородного) насоса.

Реабсорбция аминокислот. 90% аминокислот реабсорбируется в канальцах почки. Этот процесс осуществляется с помощью вторично-активного транспорта (энергия — в резуль­тате работы натриевого насоса), в котором имеется, вероятно, 4 различных транспортных системы для переноса аминокислот (см. подробнее «Пищеварение, всасывание аминокис­лот»): 1) для переноса нейтральных аминокислот — валина, фенилаланина, аланина; 2) для переноса основных аминокислот — аргинина, цистина, лизина, орнитина; 3) для реабсорб-ции иминокислот (пролила, гидроксипролина) и глицина; 4) для переноса дикарбоновых

Рис. 101. Процессы реабсорбции и секреции в эпителии извитых канальцев.

1 — реабсорбция Na по градиенту (апикальная часть) и активный перенос (базапьная часть); 2 — сопряженная реабсорбция ионов Na и секреция К под влиянием альдостерона; 3 — перенос Н2О под влиянием АДГ; 4 — сопряженный перенос Na и глюкозы; 5 — сопряженная реабсорбция Na и секреция Н-ионов.

377


кислот — глутаминовой кислоты, аспарагиновой кислоты. Генетические дефекты приводят к тому, что соответствующие аминокислоты не реабсорбируются (и не всасываются в ки­шечнике). Например, при болезни Хартнупа нарушена реабсорбция валила, фенилаланина, аланина, а при синдроме Фанкони нарушен транспорт глутаминовой и аспарагиновой кислот.

Реабсорбция белков. В норме небольшое количество белка (не более 30 мг в минуту) попадает в фильтрат и реабсорбируется. За сутки фильтруется и реабсорбируется 1,8— 18 г белка, а с конечной мочой уходит не более 20—75 мг белка в сутки.

Процесс реабсорбции белка осуществляется с помощью пиноцитоза (эндоцитоза) — эпителий почечного канальца активно захватывает белок, образуя вокруг него пиноцитоз-ный пузырек. Войдя в клетку, белок подвергается гидролизу со стороны ферментов лизо-сом и превращается в аминокислоты, которые выходят в интерстиций и попадают в конеч­ном итоге в кровь. Процесс пиноцитоза (эндоцитоза) активный, требует затраты энергии, которая освобождается при гидролизе АТФ. За 1 минуту с помощью пиноцитоза реабсорби­руется не более 30 мг белка. Поэтому при повышенной фильтрации белка он появляется я конечной моче. Протеинурия считается слабой, если за сутки теряется с мочой до 0,5 г белка, умеренной — при потере до 4 г белка, и тяжелой ■— когда потери превышают 4 г в сутки. В клинике наблюдались случаи потери белка, превышающие 50 г в сутки.

В физиологических условиях тоже возможна протеинурия. Например, после тяжелой мышечной работы (маршевая альбуминурия), при переходе из горизонтального в верти­кальное положение (ортостатическая альбуминурия), при повышении венозного давления. При патологии — это имеет место при нефритах, нефропатиях, а также при гиперпротеине-мии, например, при миеломной болезни появляется в моче белок Бенс-Джонсона.

Реабсорбция жиров. Вероятно, в силу хорошей жирорастворимости жирные кислоты, триглицериды, фосфолипиды хорошо реабсорбируются.

Реабсорбция слабых органических кислот и оснований. Многие лекарственные вещества представляют собой либо слабые основания, либо слабые кислоты. Поэтому вопрос о реаб­сорбции слабых оснований и кислот представляет определенный интерес. Установлено, что в ионизированном состоянии слабые основания и слабые кислоты плохо проходят через почечный эпителий, поэтому они не реабсорбируются и выводятся с мочой. Недиссоцииро-ванные кислоты и основания в силу концентрирования мочи могут по градиенту концентра­ции переходить в кровь, т. е. реабсорбироваться. Бели моча щелочная, то слабые кислоты ионизируются и поэтому не ^абсорбируются. Вот почему при отравлении фенобарбита­лом или ацетилсалициловой кислотой (слабыми кислотами) для их быстрого выведения из организма необходимо введение щелочных растворов, например, бикарбоната натрия, что­бы мочу сделать щелочной и перевести кислоты в ионизированное состояние, чтобы спо­собствовать их выделению:

Для слабых щелочей недиссоциируемость возникает в кислой среде, поэтому для усиле­ния выделения щелочей требуется вводить в кровь кислые продукты (закислять мочу).

Реабсорбция мочевины. Мочевине принадлежит важная роль в функции почки, в частно­сти, в механизмах концентрирования мочи.

Мочевина хорошо фильтруется. Когда моча идет по проксимальному канальцу, то она концентрируется за счет всасывания веществ и концентрация мочевины возрастает, поэто­му по градиенту концентрации мочевина частично уходит через эпителий в кровь. Но ско­рость этого процесса невысокая, и поэтому лишь часть мочевины реабсорбируется. Ос­тальная часть мочевины проходит в составе первичной мочи до собирательных трубок. При концентрировании мочи в собирательных трубках возрастает концентрация мочевины, и она устремляется в интерстиций, создавая здесь примерно 50% осмотического давления. Этот переход во многом зависит от антидиуретического гормона. Из интерстиция в силу градиента концентрации мочевина вновь попадает в восходящую часть петли Генле, и, та­ким образом, совершается так называемый внутрилочечный круговорот мочевины. Следу­ет все-таки подчеркнуть, что организм избавляется от избытка мочевины, так как часть ее покидает почки с мочой.


Реабсорбция бикарбонатов. Бикарбонаты хорошо фильтруются и их концентрация в филь­трате составляет 25—28 ммоль/л. Если бы они не реабсорбировались, то организм ежесу­точно терял бы огромное количество бикарбонатов — основного компонента бикарбонат-ного буфера крови, и потому имел бы место ацидоз. Но в почках предусмотрен механизм реабсорбции бикарбонатов — он сопряжен с процессами регуляции кислотно-щелочного равновесия и потому будет рассмотрен подробнее ниже.

Реабсорбция натрия. Основная часть ионов натрия (до 65%) реабсорбируется в прокси­мальных канальцах, 25% — в петле Гелле (восходящая часть), 9% — в дистальных канальцах нефрона и около 1% — в собирательных трубках. Благодаря этому почки почти 99% фильтру­емого натрия возвращают назад. Натрий является ценным ионом — его реабсорбция важна не только для сбережения этого иона, но и для транспорта глюкозы, аминокислот.

Предполагается как миниум 3 механизма активного транспорта натрия; натрий-калие­вый насос, натриевый насос и натрий-водородный насос. Натрий-калиевый насос работает по принципу обмена ионов натрия на ионы калия. Расположен он на базальной части эпите­лия почечного канальца, в результате его активности ионы натрия выносятся из эпителия и в них создается пониженная концентрация натрия, поэтому натрий из просвета канальцев по градиенту концентрации (как правило, вместе с глюкозой или аминокислотой) входит в клетку, а потом из нее выносится в интерстиций и кровь. В обмен на натрий из крови выно­сится (секретируется) калий. Таким образом, реабсорбция натрия частично связана с секре­цией калия. Полагают, что около 40% натрия переносится за счет работы калий-натриевого насоса. Этот насос чувствителен к строфантину К (блокатор насоса) и регулируется альдо-стероном: под влиянием этого гормона увеличивается синтез белков — компонентов насо­са и возрастает мощность реабсорбции натрия. Полагают, что натрийуретический гормон (атриопептин) угнетает работу этого насоса.

Натрий-водородный насос работает по типу выноса из клетки избыточного содержания ионов водорода, в результате чего в клетку вносится ион натрия.

Натриевый насос изолированно, независимо от ионов калия, совершает выброс на­трия из эпителиальной клетки в интерстиций, откуда натрий поступает в кровь. По мнению Р. Шмидта и Т. Тевса (1996), часть натрия поступает в интерстиций пассивно — вместе с растворителем, который идет из просвета канальца в интерстиций, где создается за счет натрия высокое осмотическое давление.

Помимо участия натрия в транспорте аминокислот и глюкозы, он играет исключитель­но важную роль (вместе с ионами хлора) в создании осмотически активной среды в интер­стиций мозгового слоя почки, через которую проходят петли Генле и собирательные труб­ки. Благодаря этому в почках возможен механизм концентрирования мочи.

Реабсорбция калия. Калий хорошо фильтруется. Если бы не было механизма его реаб­сорбции, то весь калий уходил бы из организма. Почти 90% профильтровавшегося калия реабсорбируется в проксимальном канальце нефрона, 10% — проходит в дистальные части (возможно, эти 10% — результат секреции). Если уровень калия в крови низкий, то в дис­тальных участках нефрона эти 10% полностью реабсорбируются, если же уровень калия выше нормы (больше 4,5 ммоль/л), то эти 10% могут покинуть почку с мочой.

Реабсорбция калия осуществляется, вероятно, с участием калиевого насоса. Предпола­гается, что такой насос расположен на апикальной части эпителия почечного канальца. Секреция калия осуществляется за счет работы калий-натриевого насоса, расположенного на базальной части эпителиальной клетки.

Альдостерон за счет активации калий-натриевого насоса увеличивает секрецию калия. Инсулин, наоборот, способствует реабсорбции калия.

Реабсорбцня кальция. В проксимальном канальце реабсорбируется около 63% всего профильтровавшегося кальция, в петле Генле — 23%, около 11% — в дистальном извитом канальце, 2,8% — в собирательных трубках и лишь 0,2% кальция экскретируется с мочой. Реабсорбция кальция усиливается паратгормоном и тормозится тирокальцитонином.


Реабсорбция воды. Вода реабсорбируется пассивно за счет транспорта осмотически ак­тивных веществ: например, при транспорте глюкозы, аминокислот, белков, ионов, в том числе натрия, калия, кальция, хлора. Огромную роль играет осмос: в интерстиции создают­ся участки высокой осмотической активности, и вода из просвета канальцев устремляется в интерстиции. Основная часть воды реабсорбируется в проксимальных канальцах и в нисхо­дящей части петли Генле, много воды реабсорбируется в собирательных трубках, где этот процесс зависит от двух факторов: а) от осмотического давления в интерстиции и 2) от уровня в крови АДГ и числа рецепторов к АДГ в эпителии собирательных трубок. Бели АДГ не продуцируется или секретируется мало, то за сутки потеря воды с мочой может достичь 25 литров. Этот пример показывает мощность реабсорбции воды в собирательных трубках.

При снижении реабсорбции осмотически активных веществ уменьшается и реабсорб­ция воды, например, при наличии в конечной моче глюкозы вместе с ней уходит и вода. Среди фармакологических средств, предназначенных для повышения суточного диуреза, имеются осмотически активные вещества, например, маннит, мочевина. При отеке мозга, легких внутривенно вводится маннит, вещество, которое фильтруется, но не реабсорбиру­ется, поэтому вместе с ним из организма уходит вода.




Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.