Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Дифференциальное уравнение теплопроводности с источником теплоты



При выводе уравнения теплопроводности (3.32) предполагалось отсутствие внутренних источников или стоков теплоты. Однако есть среды, внутри которых могут протекать те или иные процессы с выделением (источник) или поглощением (сток) теплоты. К таким средам, относятся вода, лед, снег, пар, а также металлы, бетон, химические и другие вещества. Процесс испарения воды, таяния льда и снега сопровождается поглощением теплоты, а обратный ему процесс — замерзание воды — выделением теплоты. При этом теплота источника или стока может зависеть не только от координат тела, но и от его температуры и ее распределения в теле.

При наличии источника или стока уравнение теплового баланса (3.27) должно быть дополнено еще одним членом, учитывающим их теплоту, а именно:

Q8 = W dxdydzdτ, (3.40)

где Q8 — количество теплоты, выделенное или поглощенное средой в объеме ¶xyz за время dτ; W — интенсивность источника или стока.

С учетом дополнительного члена (3.40) уравнение теплопроводности (3.32) запишем в следующем виде:

(3.41)

 

или

 

(3.42)

 

В том случае, когда в среде имеют место поглотители (сток) тепловой энергии, перед вторым слагаемым правой части уравнения следует ставить знак минус.




Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.