Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Нормально-распределенная случайная величина (закон Гаусса).



Определение: Случайная величина называется нормально-распределенной, если ее плотность вероятности имеет вид:

(5)

Замечание: нормальный закон распределения зависит от двух параметров: a, σ (σ2) (N(a;σ)).

Можно доказать, что математическое ожидание ХN равно a.

(6)

Пример:

Написать плотность вероятности

 

Функция распределения непрерывной случайной величины является первообразной от плотности и имеет вид:

(7) , где Φ(t) – интегральная функция Муавра-Лапласа.

 

Замечание: т.к. Φ(t) – затабулирована, то для нормального закона распределения, можно вычислить любые вероятности. Графиком плотности вероятности нормального закона распределения является кривая Гаусса.

 

Замечания:

1. график симметричен относительно прямой х = а (математическое ожидание);

2. чем больше дисперсия σ2, тем ниже max и тем шире пик кривой, т.е. ее разброс, относительно среднего значения.

 




Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.