Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Неравенство Чебышева для доли или частости (неравенство Бернулли).



Применим неравенство 4 для случайной величины

(7)

 

Замечание:

По неравенству 7 можно оценить либо вероятность P, либо отклонение ε, либо число испытаний n (см. аналогичные задачи 2-е следствие из интегральной теоремы Муавра-Лапласа).

Пример:

Вероятность попадания в цель при одном выстреле равна 0,3. произведено 100 выстрелов. Оценить вероятность того, что процент попадания будет заключен в пределах от 25% до 35%. Уточнить результат с помощью следствия из интегральной теоремы Муавра-Лапласа.

Дано:

Используя формулу 7 →

Ответ:

С вероятностью не менее, чем 0,16 можно утверждать, что процент попадания будет заключен в пределах от 25% до 35%.

Вывод: полученный результат не противоречит, а уточняет предыдущую оценку.

Пример:

В условиях предыдущей задачи оценить количество выстрелов, чтобы с вероятностью не меньше чем 0,8 можно было гарантировать отклонение ε = 0,05.

Дано:

Ответ: Нужно произвести не менее 420 выстрелов, чтобы с вероятностью не менее 0,8 гарантировать отклонение ε = 0,05.




Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.