Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Нахождение параметров линейных уравнений регрессии методом наименьших квадратов.



После того, как сделана выборка, в линейных уравнениях регрессии I и II условные математические ожидания заменяются их оценками – групповыми средними. Тогда уравнения регрессии принимают следующий вид:

- I

- II

Метод наименьших квадратов состоит в том, что неизвестные параметры a и b – I, c, d – II находятся из принципа минимизации суммы квадратов расстояний от опытных точек, полученных по выборке, до теоретических точек, полученных соответственно по уравнениям I и II.

Для нахождения min указанной суммы, находятся частный производные и приравниваются к 0. Получается сумма уравнений, которые называются нормальными системами:

I

Коэффициент а в уравнении регрессии I называют коэффициентом регрессии y по x и обозначается:

(12)

Тогда уравнение регрессии I приобретает вид:

- I

В дальнейшем для удобства обозначается y и уравнение I приобретает вид:

- I, где

IIаналогично с помощью M и K составляем систему нормальных уравнений для нахождения параметров c и d.

Коэффициент с обозначением называется коэффициентом регрессии x по y.

(13)

Тогда уравнение регрессии II приобретает вид:

- II

В дальнейшем для удобства обозначается y и уравнение II приобретает вид:

- II, где




Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.