Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Проверка значимости коэффициента корреляции.



Выдвигается гипотеза Н0, которая заключается в том, что между переменными х и y во всей генеральной совокупности не существует линейной корреляции не существует линейной корреляционной зависимости.

Коэффициент линейной корреляции R равен 0, а его оценка r не равна 0 только потому что вместо всей генеральной совокупности рассматривается выборка. Фактически по выборке ни о чем не говорит. Значение r не равное 0 не значимо. Т.е. проверяется гипотеза Н0: R = 0, линейной корреляционной связи нет. Для проверки этой гипотезы применяется t-критерий Стьюдента, статистика которого вычисляется по формуле:

(15)

Эта статистика затабулирована в учебнике.

Критическое значение определяется 2-мя параметрами:

1 – α, где α – уровень значимости;

n – объем выборки;

Опытное, или эмпирическое, значение t определяется по формуле 15. Если t больше tкритич. , то гипотеза Н0 отвергается, т.е. значение значимо, между х и y существует линейная корреляционная зависимость.

Пример № 3:

10 участков земли обследуются с целью определения взаимосвязи между урожайностью Y и количеством внесенных удобрений Х. данные приведены в таблице. Предполагаем, что между переменными х и y существует корреляционная зависимость. Выполнить следующие задания:

1) Вычислить групповые средние для х и для y и изобразить их на корреляционном поле, построив эмпирические линии регрессии;

2) Написать уравнения регрессии х по y и y по x и построить их графики на том же чертеже.

3) Вычислить коэффициент корреляции r и проверить его значимость при α = 0,05. сделать выводы о тесноте и направлении корреляционной связи.

4) Используя соответствующие уравнения регрессии вычислить среднюю урожайность когда количество удобрений равно 10 кг и сравнить с соответствующей средней.

 
 
   
 
   

1)

а) групповые средние y по x:

 

б) групповые средние x по y:

Предварительный анализ: по групповым средним построены эмпирические линии регрессии, точки которых образуют так называемое корреляционное поле. По результатам выборки можно предварительно заключить, что связь между переменными х и y прямая, т.е. с ростом значений одной переменной, групповые средние для другой переменной возрастают. Т.к. линии расположены близко друг к другу, можно предположить, что связь между х и y достаточно тесная.

2) для уравнений регрессии нужно вычислить:

 


 


3) коэффициент линейной корреляции r можно вычислить по 2-м формулам:

Вывод:

1) т.к. , то между переменными х и y существует прямая зависимость, т.е. с ростом одной переменной, другая в среднем возрастает;

2) т.к. , то связь между х и y – тесная;

3) т.к. коэффициенты регрессии > 0, то обе прямые наклонены направо;

4) т.к. связь тесная, то угол между прямыми маленький, прямые близко расположены друг к другу;

Проверка значимости коэффициента корреляции.

.

Т.к. , то коэффициент корреляции r значим, между урожайностью и количеством удобрений существует тесная корреляционная зависимость;

4) Дано: Х = 10 – аргумент.

Выберем то уравнение регрессии, в котором х является аргументом. Это уравнение I. Подставляем туда 10 и получаем.

Такой будет средняя урожайность при 10 кг удобрений.

значит модель адекватна действительности.

 

Замечания:

1. по уравнениям регрессии I и II можно делать прогнозы, однако эти прогнозы адекватны реальности (соответствуют действительности) только вблизи центра корреляционного поля (точки );

2. если предположить, что между х и y существует не линейная корреляционная зависимость, т.е. уравнения I и II не линейные, то их неизвестные параметры тоже можно найти методом наименьших квадратов.




Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.