Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Динамические ряды, их виды, методы выравнивания. Показатели.



При изучении динамики какого-либо явления прибегают к построе­нию динамического ряда.

Динамический ряд - это ряд однородных статистических вели­чин, показывающих изменение какого-либо явления во времени и расположенных в хронологическом порядке через определенные промежутки времени. Числа, составляющие динамический ряд, называются уровнями.

Уровень ряда- размер (величина) того или иного явления, достигнутый в определенный период или к определенному моменту времени. Уровни ряда могут быть представлены абсолютными, относительны­ми или средними величинами.

Динамические ряды делятся на

а) простые (состоящие из абсолютных величин) - могут быть:

1) моментными- состоит из величин, характеризую­щих явление на какой-то определенный момент (статистические сведения, обычно регистрируемые на начало или конец месяца, квартала, года)

2) интервальными - состоит из чисел, характеризую­щих явление за определенный промежуток времени (интервал) - за неделю, месяц, квартал, год (данные о числе родившихся, умерших за год, число инфек­ционных заболеваний за месяц). Особенностью интервального ряда является то, что его члены можно суммировать (при этом ук­рупняется интервал), или дробить.

б) сложные (состоящие из относительных или средних вели­чин).

Динамические ряды могут подвергаться преобразованиям, целью которых является выявление особенностей изменения изучаемого про­цесса, а также достижение наглядности.

Показатели динамического ряда:

а) уровни ряда - величины членов ряда. Величина первого члена ряда носит название начального (исходного) уровня, величина послед­него члена ряда - конечного уровня, средняя величина из всех чле­нов ряда называется средним уровнем.

б) абсолютный прирост (убыль) - величина разности между последующим и предыду­щим уровнями; прирост выражается числами с положи­тельным знаком, убыль - с отрицательным знаком. Значение прироста или убыли отражают изменения уровней динамического ряда за оп­ределенный промежуток времени.

в) темп роста (снижения) - показывает отношение каждого после­дующего уровня к предыдущему уровню и обычно выражается в процен­тах.

г) темп прироста (убыли) - отношение абсолютного прироста или убыли каждого последующего члена ряда к уровню предыдущего, выра­женное в процентах. Темп прироста может быть вычислен также по формуле: Темп роста - 100%

Абсолютное значение одного процента прироста (убыли) - полу­чается от деления абсолютной величины прироста или убыли на пока­затель темпа прироста или убыли за тот же период.

Для более наглядного выражения нарастания или убывания ряда можно преобразовать его путем вычисления показателей наглядности, показывающих отношение каждого члена ряда к одному из них, приня­тому за сто процентов.

Иногда динамика изучаемого явления представлена не в виде неп­рерывно меняющегося уровня, а отдельными скачкообразными измене­ниями. В этом случае для выявления основной тенденции в развитии изучаемого явления прибегают к выравниванию динамического ряда. При этом могут быть использованы следующие приемы:

а) укрупнение ин­тервала - суммирование данных за ряд смежных периодов. В результате получаются итоги за более про­должительные промежутки времени. Этим сглаживаются случайные ко­лебания и более четко определяется характер динамики явления.

б) вычисление групповой средней - определение сред­ней величины каждого укрупненного периода. Для этого необходимо суммировать смежные уровни соседних периодов, а затем сумму раз­делить на число слагаемых. Этим достигается большая ясность изме­нений во времени

в)вычисление скользящей средней - в некоторой степени устраняет влияние случайных колебаний на уровни динамического ряда и более заметно отражает тенденцию явления. При ее вычислении каждый уро­вень ряда заменяется на среднюю величину из данного уровня и двух соседних с ним. Чаще всего суммируются последовательно три члена ряда, но можно брать и больше

г) графический метод- выравнивание от руки или с помощью линейки, циркуля графического изображения динамики изучаемого явления.

д) выравнивание методом наименьших квадратов- один из наиболее точных способов выравнивания динамического ряда. Метод преследует цель ус­транить влияние временно действующих причин, случайных факторов и выявить основную тенденцию в динамике явления, вызванную воздей­ствием только длительно действующих факторов. Выравнивание произ­водится по линии, наиболее соответствующей характеру динамики изучаемого явления, при наличии основной тенденции к росту или снижению частоты явления. Такой линией является обычно прямая, которая наиболее точно характеризует основное направление изменений, однако существуют и другие зависимости (квадратическая, кубическая и т.д.). Этот метод позволяет дать количественную оценку выявлен­ной тенденции, оценить средние темпы ее развития и рассчитать прогнозируемые уровни на следующий год.

 




Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.