Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Неравенство Маркова



Нера́венство Ма́ркова- в теории вероятностей даёт оценку вероятности, что случайная величина превзойдёт по модулю фиксированную положительную константу, в терминах её математического ожидания. Получаемая оценка обычно достаточно груба. Однако, она позволяет получить определенное представление о распределении, когда последнее не известно явным образом.

Пусть случайная величина определена на вероятностном пространстве , и её математическое ожидание конечно. Тогда

,

где .

Пусть — неотрицательная случайная величина. Тогда, взяв , получаем

.

 

Нера́венство Чебышёва в теории вероятностей утверждает, что случайная величина в основном принимает значения близкие к своемусреднему. Более точно, оно даёт оценку вероятности, что случайная величина примет значение далёкое от своего среднего. Неравенство Чебышёва является следствием неравенства Маркова.

Пусть случайная величина определена на вероятностном пространстве , и её математическое ожидание и дисперсия конечны. Тогда

,

где .

Если , где - стандартное отклонение и , то получаем

.

В частности, случайная величина с конечной дисперсией отклоняется от среднего больше, чем на стандартных отклонения с вероятностью меньше . Она отклоняется от среднего на стандартных отклонения с вероятностью меньше .

 

При доказательстве неравенства была использована числовая характеристика – математическое ожидание. Эта неслучайное число определяется природой наблюдаемых случайных величин и не зависит от того, как были проведены испытания. На практике почти всегда отсутствует возможность найти математическое ожидание и приходится вместо него использовать среднее арифметическое наблюдаемых значений. Разумеется, что это случайное число , которое все-таки меньше отличается от математического ожидания, чем отдельный результат испытания.

Средним арифметическим величины X называется случайная величина , которая определяется выражением
.
Теорема Чебышева (закон больших чисел) устанавливает связь между средним арифметическим и математическим ожиданием случайной величины.

 

Теорема Бернулли в теории вероятностей утверждает, что при многократном повторении случайного эксперимента с двумя исходами относительная частота успехов приближается к вероятности успеха в одном испытании.

Рассмотрим схему Бернулли с вероятностью успеха то есть пусть дана последовательность независимых случайных величин где

Определим как число успехов в первых испытаниях:

Тогда

при

то есть

 

Теорема Ляпунова — теорема в теории вероятностей, устанавливающая некоторые общие достаточные условия для сходимости распределения сумм независимых случайных величин к нормальному закону.

Часто приходится иметь дело с такими случайными величинами, которые являются суммами большого числа независимых случайных величин. При некоторых весьма общих условиях оказывается, что эта сумма имеет распределение, близкое к нормальному, хотя каждое из слагаемых может не подчиняться нормальному закону распределения вероятностей. Эти условия были найдены Ляпуновым и составляют содержание теоремы, названной его именем.

Пусть с ,… последовательность попарно независимых случайных величин с математическими ожиданиями M и дисперсиями D , причём эти величины обладают следующими двумя свойствами:

1) Cуществует такое число L, что для любого i имеет место неравенство , т, е. все значения случайных величин, как говорят, равномерно ограничены, относительно математических ожиданий;

2) Сумма неограниченно растёт при

Тогда при достаточно большом n сумма имеет распределение, близкое к нормальному.

Пусть и математическое ожидание и дисперсия случайной величины . Тогда


Где — интеграл вероятности.

 

Центра́льные преде́льные теоре́мы (Ц. П. Т.) — класс теорем в теории вероятностей, утверждающих, что сумма достаточно большого количества слабо зависимых случайных величин, имеющих примерно одинаковые масштабы (ни одно из слагаемых не доминирует, не вносит в сумму определяющего вклада), имеет распределение, близкое к нормальному.

Так как многие случайные величины в приложениях формируются под влиянием нескольких слабо зависимых случайных факторов, их распределение считают нормальным. При этом должно соблюдаться условие, что ни один из факторов не является доминирующим. Центральные предельные теоремы в этих случаях обосновывают применение нормального распределения.

Классическая Ц. П. Т

Пусть есть бесконечная последовательность независимых одинаково распределённых случайных величин, имеющих конечное математическое ожидание идисперсию. Обозначим последние и , соответственно. Пусть также

.

Тогда

по распределению при ,

где — нормальное распределение с нулевым математическим ожиданием и стандартным отклонением, равным единице. Обозначив символом выборочное среднеепервых величин, то есть , мы можем переписать результат центральной предельной теоремы в следующем виде:

по распределению при .

Замечания[править | править исходный текст]

· Неформально говоря, классическая центральная предельная теорема утверждает, что сумма независимых одинаково распределённых случайных величин имеет распределение, близкое к . Эквивалентно, имеет распределение близкое к .

· Так как функция распределения стандартного нормального распределения непрерывна, сходимость к этому распределению эквивалентна поточечной сходимости функций распределения к функции распределения стандартного нормального распределения. Положив , получаем , где — функция распределения стандартного нормального распределения.

· Центральная предельная теорема в классической формулировке доказывается методом характеристических функций

· Вообще говоря, из сходимости функций распределения не вытекает сходимость плотностей. Тем не менее в данном классическом случае это имеет место.




Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.