детерминированных сигналов и случайных процессов широко используется их спектральное представление в виде спектральной плотности, которая базируется на преобразовании Фурье.
Если процесс имеет конечную энергию и квадратично интегрируем (а это нестационарный процесс), то для одной реализации процесса можно определить преобразование Фурье как случайную комплексную функцию частоты:
(1)
Однако она оказывается почти бесполезной для описания ансамбля. Выходом из этой ситуации является отбрасывание некоторых параметров спектра, а именно спектра фаз, и построении функции, характеризующей распределение энергии процесса по оси частот. Тогда согласно теореме Парсеваля энергия
(2)
Функция характеризует, таким образом, распределение энергии реализации по оси частот и называется спектральной плотностью реализации. Усреднив эту функцию по всем реализациям можно получить спектральную плотность процесса.
Перейдем теперь к стационарному в широком смысле центрированному случайному процессу , реализации которого с вероятностью 1 имеют бесконечную энергию и, следовательно, не имеют преобразования Фурье. Спектральная плотность такого процесса может быть найдена на основании теоремы Винера-Хинчина как преобразование Фурье от корреляционной функции:
(3)
Если существует прямое преобразование, то существует и обратное преобразование Фурье, которое по известной определяет :
(4)
Если полагать в формулах (3) и (4) соответственно и , имеем
(5)
(6)
Формула (6) с учетом (2) показывает, что дисперсия определяет полную энергию стационарного случайного процесса, которая равна площади под кривой спектральной плотности. Размерную величину можно трактовать как долю энергии, сосредоточенную в малом интервале частот от до . Если понимать под случайный (флуктуационный) ток или напряжение, то величина будет иметь размерность энергии [В2/Гц] = [В2с]. Поэтому иногда называют энергетическим спектром. В литературе часто можно встретить другую интерпретацию: – рассматривается как средняя мощность, выделяемая током или напряжением на сопротивлении 1 Ом. При этом величину называют спектром мощности случайного процесса.
Свойства спектральной плотности
· Энергетический спектр стационарного процесса (вещественного или комплексного) – неотрицательная величина:
.
(7)
· Энергетический спектр вещественного стационарного в широком смысле случайного процесса есть действительная и четная функция частоты:
.
(8)
· Корреляционная функция и энергетический спектр стационарного в широком смысле случайного процесса обладают всеми свойствами, характерными для пары взаимных преобразований Фурье. В частности, чем «шире» спектр тем «уже» корреляционная функция , и наоборот. Этот результат количественно выражается в виде принципа или соотношения неопределенности.