Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Системы подчиненного регулирования (СПР)



 

Система последовательного действия содержит меньше элементов, простая и удобная в настройке. Особенностью системы последовательного действия является подчиненное регулирование основных параметров электропривода.

 

Число последовательно включенных регуляторов равно числу регулируемых параметров. На вход каждого регулятора подаются сигналы заданного и действительного значений регулируемого параметра, причем предыдущий регулятор вырабатывает сигнал задания для последующего. В системе легко вводятся ограничения.

 

ОБОБЩЕННАЯ СТРУКТУРНАЯ СХЕМА СПР

 

 

В соответствии со схемой передаточная функция (ПФ) объекта регулирования, например, второго контура запишется в виде

 

,

 

где W02(p) - передаточная функция собственно объекта 2го контура; W01(р) - передаточная функция объекта 1го контура; Wp1(p) - ПФ регулятора 1го контура; W31(р) - ПФ замкнутого первого контура.

 

В рассмотренной системе контур регулирования наждого пара­метра (координаты) содержит только одну "большую" постоянную времени, компенсируемую действием регулятора, что значительно облегчает синтез системы и позволяет применять однотипные регулирующие элементы.

 

Расчёт параметров СПР производится путём последовательной оптимизации отдельных контуров. Под оптимизацией понимается приведение передаточной функции замкнутого контура в соответствие с поставленными требованиями (быстродействие, перерегулирования и т.д).

 

ПФ объекта оптимизированного контура при определённых рассматриваемых ниже допущениях может быть сведена к виду

 

,

 

где Woк(р) - ПФ звеньев, действие которых компенсируется регулятором. Второй сомножитель представляет собой произведения ПФ апериодических звеньев, компенсация действия которых для данных условий нецелесообразна. Обычно постоянные времени τ малы по сравнению с постоянными времени входящими в сомножитель Woк(p). Поэтому не компенсируемые постоянные называются малыми, а компенсируемые - большими. Оптимизация в данном случае сводится к замене разомкнутой цепи с большой постоянной времени замкнутым контуром, описываем дифференциальным уравнением того же порядка, но с меньшей постоянной.

 

Передаточная функция и регулятора

 

,

 

где ∑τ = σ– сумма малых постоянных времени; а – коэффициент демпфирования контура.

 

КОНТУР РЕГУЛИРОВАНИЯ ТОКА

 

Структурная схема замкнутого контура регулирования тока якоря ДПТ

 

Структурная схема разомкнутой цепи

 

,

 

где: ; а = ат = 2 .

 

Передаточная функция пропорционально – интегрального регулятора тока (ПИ-регулятора)

 

.

 

Структурная схема разомкнутой цепи регулирования с ПФ регулятора

 

Схема ПИ - регулятора тока

 

 

Передаточная функция разомкнутого контура

 

,

 

где: Тт = атТп – постоянная времени интегрирования контура тока.

Постоянная времени интегрирования регулятора

 

.

Постоянная времени обратной связи регулятора

 

.

Передаточный коэффициент ОС по току

 

 

где kд.т =kш·kу - передаточный коэффициент измерителя тока, в/а; kш - коэффициент передачи шунта, в/а; kу - коэффициент усиления датчика тока.

 

Передаточная функция замкнутого контура регулирования тока имеет вид

 

.

 

КОНТУР РЕГУЛИРОВАНИЯ СКОРОСТИ

 

Регулятор контура скорости имеет пропорциональную либо пропорционально-интегральную характеристику, т.е. однократно- или двукратноинтегрирующая система. Они обладают астатизмом 1-го или 2-го порядка.

 

Структурная схема разомкнутого контура регулирования скорости

 

Обозначим σ = Тт ; ; а = ас.

ПФ пропорционального регулятора скорости (П – регулятора)

.

 

Структурная схема разомкнутого оптимизированного контура скорости

 

ПФ разомкнутого контура

.

 

Схема пропорционального регулятора скорости

 

 

Передаточная функция регулятора

 

.

 

Передаточный коэффициент ОС по скорости

 

,

 

где kдс- передаточный коэффициент датчика скорости, В/об/мин.

Постоянная времени интегрирования контура скорости

 

.

 

Передаточная функция замкнутой системы регулирования скорости

 

.

 

Графики изменения скорости во времени в зависимости от коэффициента демпфирования представлены на рисунке

 

 

 

 

Схема регуляторов.

 

 

СТРУКТУРНАЯ СХЕМА ДВУХКОНТУРНОЙ ОДНОКРАТНОИНТЕГРИРУЮЩЕЙ СИСТЕМЫ РЕГУЛИРОВАНИЯ СКОРОСТИ (ТП-ДПТ)

 

Если на вход П - или ПИ - регулятора скорости подать задающий сигнал Uзс скачком, то угловая скорость установится за указанное время и с указанным перерегулированием, но при отсутствии каких-либо ограничений на значение тока якоря, ЭДС выпрямителя, на ускорения механизмов и т.п. Практически ток якоря при этом превзойдет допустимое значение, поэтому должно быть предусмотрено ограничение тока. В системе подчинённого регулирования оно выполняется просто - для этого нужно огра­ничить максимальный уровень сигнала задания тока Uзт т.е., сигнала на выходе регулятора скорости. Ограничение этого сигнала достигается установкой в цепь обратной связи усилителя скорости стабилитронов V.

 

 

При такой схеме ограничения тока и изменения Uзс скачком регулятор скорости сразу входит в ограничение, т.е. устанавливается скачком Uзтmax,соответствующее допустимому току якоря. Контур тока отрабатывает это задание за время t = 4,7· TП с перерегулированием 4,33% и привод разгоняется с постоянным значением тока. Ускорение привода будет зависить от момента инерции и момента статической нагрузки. По достижении заданной угловой скорости за счёт сигнала обратной связи по скорости регулятор выйдет из зоны ограничения и будет уменьшать Uзт до уровня, определяемого нагрузкой.

 

При перегрузке или стопорении привода резкое снижение угловой скорости, т.е. сигнала ООС по скорости, также вводит регулятор скорости в зону ограничения, и привод работает с постоянным допустимым моментом. Изменяя уровень ограничения Uзт, можно изменять значение этого момента.

 

 

Механические характеристики двигателя в системе подчинённого регулирования. Ограничение тока двигателя при пусках и торможениях в системах подчинённого регулирования обычно дости­гается не ограничением выход­ного сигнала регулятора скорости ( ограничение сохраняется как средство защиты), а применением задатчика интенсивности (ЗИ), посредством которого сигнал задания скорости изменяется не скачком, а линейно во времени до требуемого уровня. Ток якоря при этом устанавливается и спадает в конце пуска или торможения по оптимальному закону, а угловая скорость привода, при Mс = const изменяется по линейному закону, следуя за сигналом задатчика.

 

Основным достоинством применения ЗИ является независимость значения ускорения привода от статического момента.

 

Функциональная схема ЗИ с временем отработки до 20 сек.

 

 

Первый усилитель работает в режиме регулируемого ограничения. Его выходное напряжение интегрируется во времени с помощью второго усилителя с парафазным выходом

,

где: - постоянная интегрирования.

 

Время интегрирования t для номинального значения выходного напряжения может регулироваться изменением входного сигнал или постоянной времени T.

 

В схеме используются оба этих способа. Ступенчатое изменение времени интегрирования осуществляется коммутацией части сопротивления , а плавная регулировка производится воздейсвтием на узел ограничения 3, определяющий предельную величину выходного напряжения первого усилителя.

Вся система охватывается жёсткой отрицательной ОС с коэффициентом передачи, равным 1( R1 = Rос). В результате выходное напряжение интегратора в процессе отработки устанавливается равным напряжению задания .

 

Пока выходное напряжение не достигло уровня напряжения жёсткая обратная связь блокирована и первый усилитель имеет на выходе напряжение, определяемое узлом ограничения 3 и не зависящее от величины входного сигнала . В тот момент, когда напряжения и сравниваются по величине, выходное напряжение первого усилителя резко уменьшается практически до 0 и процесс интегрирования на этом прекращается.

 

Один из главных недостатков систем подчинённого регулирования - это уменьшение быстродействия системы примерно в 2m-1 раз по мере роста числа последовательных контуров; m - номер контура. Поэтому используется число последовательных контуров не более трех-четырёх.

 

Системы подчинённого регулирования широко примененяются не только в приводах постоянного тока, но и в приводах переменного тока.

УНИФИЦИРОВАННАЯ БЛОЧНАЯ СИСТЕМА РЕГУЛЯТОРОВ (УБСР)

 

Основные задачи управления электроприводами могут быть решены с помощью относительно небольшого набора командных устройств, датчиков и регулирующих устройств. Законы регулирования - пропорциональный (П), интегральный (И), пропорционально-интегральный (ПИ) и др. могут быть реализованы применением однотипных усилителей постоянного тока с различными связями и цепями на входе. С помощью функциональных преобразователей можно выполнить операции умножения, деления, введения различного рода нелинейностей. Датчики, помимо измерения параметров, обеспечивают разделение потенцналов измеряемой и входной величин. Система выполняется в виде блочной конструкции, включающей в себя отдельные функциональные модули, которые могут набираться в любых комбинациях в шкафах.

 

Структурная схема операционного усилителя (ОУ)

 

 

z1, z2,…,zn входные сопротивления; zос – сопротивление обратной связи; Rф, Сф – сопротивление и емкость фильтра; zн – входное сопротивление нагрузки; y – операционный усилитель. Выходное напряжение ОУ

 

 

Схемы регуляторов:

 

пропорциональный П

 

 

интегральный И

 

,

 

где

 

дифференциальный Д

 

,

 

где

 

интегрально-пропорциональный ИП

 

пропорционально-интегральный ПИ

 

 

пропорционально-интегрально-дифференциальный ПИД

 




Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.