Мои Конспекты
Главная | Обратная связь

...

Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Оценка точности исходной системы





Помощь в ✍️ написании работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Точность работы следящей системы необходимо оценивать ошибкой обработки входного воздействия , представленного в задании на проектирование максимальной скоростью и максимальным ускорением εм. По этим двум параметрам можно сформировать гармоническое входное воздействие

,

где – амплитудное значение ;

– частота гармонического воздействия.

 

Пусть Ωм =17 град/с = 0.2967 рад/с, εм =15 град/с2 = 0.2618 рад/с2. Введем эти параметры в среду MatLab:

 

>> qm=0.2967 % ввод максимальной скорости

qm =

0.2967

 

>> еm=0.2618 % ввод максимального ускорения

еm =

0.2618

Определим амплитудное значение и частоту эквивалентного гармонического воздействия :

 

>> Bm=(qm^2)/еm

Bm =

0.3363

 

>> wk=еm/qm

wk =

0.8824

 

Ошибка слежения определяется уравнением

 

,

 

где – передаточная функция для ошибки по входному воздействию :

,

 

где W(s) – ПФ разомкнутой системы.

Для определения целесообразно воспользоваться функцией feedback (W1,W0), применяемой для вычисления ПФ встречно-параллельного соединения двух звеньев, где W1 – охватываемая модель, W0 – модель отрицательной обратной связи. В рассматриваемом примере tf-модель ПФ для ошибки получается следующим образом. Полагая W1=1, а W0=W(s), получим:

 

>> Fe=feedback(1,W)

 

Transfer function:

2.88e-005 s^6 + 0.00529 s^5 + 0.08456 s^4 + 0.5012 s^3 + 1.206 s^2 + s

--------------------------------------------------------------------------------------------------

2.88e-005 s^6 + 0.00529 s^5 + 0.08456 s^4 + 0.5012 s^3 + 1.206 s^2 + s + 1.584

 

Учитывая, что при гармоническом входном воздействии рассогласование также изменяется гармонически, можно воспользоваться частотным методом оценки точности. Для определения значения частотной передаточной функции при , удобнее всего воспользоваться функцией freqresp (Fe,wk).

Для рассматриваемого примера получим следующее максимальное значение ошибки :

 

>> Em=freqresp(Fe,wk)*Bm

 

Em =

-0.1408 + 0.3706i

 

т.е. имеем комплексное значение рассогласования .

Для оценки амплитудного значения ошибки следует перейти к модульному соотношению для :

 

.

 

В среде MatLab это осуществляется с помощью функции абсолютного значения abs:

 

>> Em=abs(Em)

 

Em =

0.3964

 

Полученное значение сравнивается с допустимой величиной ошибки слежения ед, приведенной в табл.2.2 и делается соответствующий вывод. Пусть в нашем случае ошибка системы оказалась значительтно больше допустимой ед= 25 угл.мин. = 0.0073рад, т.е. точность работы исходной САУ не удовлетворяет техническому заданию.

Доверь свою работу ✍️ кандидату наук!
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой



Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.