Мои Конспекты
Главная | Обратная связь

...

Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Преобразование переменного тока. Трансформатор. Работа и мощность переменного тока.





Помощь в ✍️ написании работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Мощность переменного тока. Ответ на вопрос о мощности постоянного электрического тока более прост. Если напряжение между концами некоторого участка цепи равно U, а сила постоянного тока в этом участке цепи рав­на I, то мощность, выделяемая током в этом участке цепи, равна

P = IU = I2∙R (1), где R — активное сопротивление участка цепи.

В случае переменного тока дело обстоит сложнее, так как сила переменного тока определяется не только актив­ным сопротивлением цепи R, но и ее индуктивным или ем­костным сопротивлением.

Представим себе, например, что какой-нибудь участок цепи имеет только емкостное сопротивление, т. е. содержит только конденсатор. Процесс прохождения тока через кон­денсатор представляет собой про­цесс многократно повторяющейся зарядки и разрядки этого конденсатора. В течение той четверти периода, когда кон­денсатор заряжается, источник расходует некоторую энер­гию, которая запасается в конденсаторе в виде энергии его электрического поля. Но в следующую четверть периода конденсатор разряжается и отдает обратно в сеть практи­чески всю запасенную в нем энергию. Таким образом, если пренебречь обычно очень малыми потерями энергии на на­гревание диэлектрика в конденсаторе, то прохождение тока через конденсатор не связано с выделением в нем мощности.

То же будет иметь место и при прохождении тока через катушку, сопротивление которой можно считать чисто ин­дуктивным. В течение той четверти периода, пока ток нара­стает, в катушке создается магнитное поле, обладающее определенным запасом энергии. На создание этого поля расходуется энергия источника. Но в следующую четверть периода, когда ток уменьшается, магнитное поле исчезает, и запасенная в нем энергия в процессе самоиндукции вновь возвращается к источнику.

Наличие емкостного или индуктивного сопротивления цепи хотя и отражается на силе тока в этой цепи, но не связано с расходом мощности в ней. В конденса­торах и катушках с индуктивным сопротивлением энергия то берется «взаймы» у источника, то снова возвращается к нему, но она не уходит из цепи, не тратится на нагрева­ние проводников (джоулево тепло) или на совершение механической работы и т. п.

Чтобы не ослеплять зрителей резким переходом от темноты к свету, во многих театрах и кинотеатрах свет после окончания действия или сеанса включают не сразу, а постепенно. Лампы сначала начинают светиться тусклым красным светом и разгора­ются медленно в течение нескольких секунд. Это можно осущест­вить либо с помощью реостата, либо с помощью катушки с вы­двигающимся железным сердечником.

Таким образом, при наличии в цепи индуктивного и ем­костного сопротивлений мощность, фактически расходуе­мая в цепи, всегда меньше, чем произведение UI, т. е. равна

P = U∙I∙λ (2)

где λесть некоторый коэффициент, меньший единицы, на­зываемый коэффициентом мощности данной цепи.

Для сину­соидальных токов этот коэффициент равен λ = cos φ, где φ есть сдвиг фаз между током в цепи и напряжением между концами рассматриваемо­го ее участка. Таким образом,

P = I∙U∙cosφ (3)

Сдвиг фаз φ между напряже­нием и током растет по мере увеличения отношения емкостного или ин­дуктивного сопротивления к активному. Но с ростом φ уменьшается зна­чение cosφ. Поэтому коэффициент мощности прибора, потребляющего переменный ток, тем меньше, чем больше его емкостное или индуктивное сопротивление по сравнению с активным. Он обращается в нуль для чисто индуктивного или чисто емкостного сопротивления (φ = π/2, соs φ = 0) и равен единице для чисто активного (φ = 0, cosφ = 1).

 

Трансформаторы. При практическом использовании энергии электрического тока очень часто возникает необ­ходимость изменять напряжение, даваемое каким-либо генератором. В одних случаях бывают нужны напряжения в тысячи или даже сотни тысяч вольт, в других необходимы напряжения в несколько вольт или несколько десятков вольт. Осуществить такого рода преобразования постоян­ного напряжения очень трудно, между тем переменное на­пряжение можно преобразовать — повышать или пони­жать — весьма просто и почти без потерь энергии, В этом заключается одна из основных причин того, что в технике пользуются в подавляющем большинстве случаев перемен­ным, а не постоянным током. Приборы, с помощью которых производится преобра­зование напряжения переменного тока, носят название трансформаторов. Принципиальная схема устройства транс­форматора показана на рис. 309.

Всякий трансформатор имеет железный сердечник, на который надеты две катуш­ки (обмотки). Концы одной из этих обмоток подключаются к источнику переменного тока, например к городской сети, с напряжением U1; нагрузка, т. е. те приборы, которые по­требляют электрическую энергию, подключается к концам второй обмотки, на которых создается переменное напряжение U2, отличное от U1.

 

Об­мотка, подключенная к источ­нику тока, называется пер­вичной, а обмотка, к которой подключена нагрузка,— вто­ричной. Если напряжение на первичной обмотке (напряже­ние источника) больше, чем на вторичной, т. е. U1>U2то трансформатор называется понижающим; если же U1<U2, то он называется повы­шающим.

Когда мы подключаем тран­сформатор к источнику переменного тока, например к городской сети, то проходящий по первичной обмотке переменный ток создает переменное магнитное поле, одна из линий которого показана штри­ховой линией на рис. 309. Так как обе обмотки надеты на общий железный сердечник, то почти все линии этого поля проходят через обмотки. Иначе можно сказать, что обе об­мотки пронизываются одним и тем же магнитным потоком. При изменении этого потока в каждом витке обмоток, как первичной, так и вторичной, индуцируется одна и та же э. д. с. е. Полная же индуцированная э. д. с. ε, возникаю­щая в каждой обмотке, равна произведению э. д. с. ε на число витков N в соответствующей обмотке. Если первич­ная обмотка имеет N1 витков, а вторичная — N2 витков, то индуцированные в них э. д. с. равны соответственно ε1 = ε∙N1 (4) и ε2 = ε∙N2 (5), т. е. (6)

При так называемом холостом ходе трансформатора, т. е. тогда, когда к концам вторичной обмотки не подклю­чена никакая нагрузка и через нее не идет ток, напряжение на концах вторичной обмотки U2равно индуцированной в ней э. д. с. ε2. Что же касается э. д. с. ε1 инду­цированной в первичной обмотке, то она по правилу Лен­ца (§ 139) всегда направлена противоположно приложен­ному к ней внешнему напряжению U1и при холостом ходе почти равна ему.

Таким образом, отношение напряжений на зажимах обмоток трансформатора при холостом ходе приближенно равно отношению индуцированных в них э. д. с:

(7)

Это отношение называется коэффициентом трансформации и обозначается буквой К:

(8)

Если, например, первичная обмотка имеет 2500 витков, а вторичная — 250 витков, то коэффициент трансформации равен 10. Подключив первичную обмотку к источнику с на­пряжением U1 = 1000 В, мы на вторичной обмотке получим напряжение U2 = 100 В. Если бы мы, наоборот, использо­вали в качестве первичной обмотку с меньшим числом вит­ков и подключили ее к источнику с напряжением U1=100 В, то коэффициент трансформации был бы равен 0,1, и на кон­цах другой обмотки мы получили бы напряжение U2= 1000 В. В первом случае наш трансформатор работает как понижаю­щий, во втором — как повышающий.

Трансформаторы рассчитываются так, чтобы при нор­мальной их нагрузке, когда током холостого хода I0 мож­но пренебречь по сравнению с рабочим током I1 токи в пер­вичной и вторичной обмотках были приблизительно обратно пропорциональны соответствующим напряжениям: (9)

Поэтому, если напряжение U2во много раз меньше, чем U1во вторичной цепи такого по­нижающего трансформатора можно получить очень боль­шие токи. Такие трансформа­торы применяются при элект­росварке. На рис. 311 для примера показан понижающий трансформатор, вторичная об­мотка которого имеет всего один виток. Напряжение U2 здесь очень мало, но ток во вторичной обмотке настолько велик, что он нагревает до красного каления толстый мед­ный стержень.

Трансформатор представляет собой, как мы видим, прибор, передающий энергию из цепи первичной обмотки в цепь вторичной. Эта передача неизбежно связана с неко­торыми потерями - расхо­дом энергии на нагрева­ние обмоток, на токи Фу­ко и на перемагничивание железа.

К. п. д. трансформатора называют отно­шение мощности, потреб­ляемой в цепи вторичной обмотки, к мощности, от­бираемой из сети. η = (10)

Раз­ность между этими вели­чинами представляет собой бесполезную потерю. Для уменьшения потерь энергии на нагревание сердеч­ников токами Фуко их изготовляют из отдельных тонких листков стали, изолированных друг от друга, а для уменьшения потерь на нагревание сердечника при его перемагничиваний сердечники изготовляют из специальных сор­тов стали, в которых эти потери малы. Благодаря этому по­тери обычно весьма малы по сравнению с мощностью, пре­образуемой в трансформаторах, и к. п. д. трансформаторов очень высок. Он достигает 98—99 % для больших трансфор­маторов и около 95% для малых.

Токи Фуко или вихревые токи – вихревые индукционные токи, возникающие в проводниках при изменении пронизывающего их магнитного потока

Трансформаторы для небольших мощностей (десятки ватт), применяющиеся главным образом в лабораториях и для бытовых целей, имеют очень небольшие размеры. Мощные же трансформаторы, преобразующие сотни и тысячи киловатт, представляют собой огромные сооружения. Обычно мощные трансформаторы помещаются в стальной бак, заполненный специальным минеральным маслом. Это улучшает условия охлаждения транс­форматора, и, кроме того, масло играет важную роль как изолирующий материал. Концы обмоток трансформатора выводятся через проходные изоляторы, укрепленные на

верхней крышке бака.

Трансформатор был изобретен в 1876 г. П. Н. Яблочко­вым, который применил его для питания своих «свечей», требующих различного напряжения.

 

Задачи:

1.1341. Понижающий трансформатор со ПО витками во вторичной обмотке понижает напряжение от 22 000 В до 110 В. Сколько витков в его первичной обмотке? (Указание: использовать формулу (7)).

2.1342. Первичная обмотка повышающего трансформато­ра содержит 100 витков, а вторичная — 1000. Напряжение в первичной цепи 120 В. Каково напряжение во вторичной цепи, если потерь энергии нет? (Указание: использовать формулу (7)).

3.1343. Лабораторный трансформатор включен в сеть на­пряжением 110 В. В первичной его обмотке содержится 440 витков провода. На выходе трансформаторов есть за­жимы на 4, 6, 8 и 10 В. Каково полное число витков во вто­ричной обмотке? (Указание: использовать формулу (7)).

4.1344. Трансформатор, содержащий в первичной обмотке 300 витков, включен в сеть напряжением 220 В. Во вторич­ную цепь трансформатора, имеющую 165 витков, включен резистор сопротивлением 50 Ом. Найдите силу тока во вторичной цепи, если падение напряжения на ней равно 50 В. (Указание: Считаем, что резистор включен последовательно и общее напряжение на вторичной обмотке считаем как U=U2+I∙R. Затем используем формулу (7) в виде (U1/(U2+I∙R) = N1/N2). Из этой формулы выразить силу тока и найти ее численное значение).

5.1345. На первичную обмотку понижающего трансфор­матора с коэффициентом трансформации 10 подается на­пряжение 220 В. При этом во вторичной обмотке, сопротив­ление которой 2 Ом, течет ток 4 А. Пренебрегая потерями в первичной обмотке, определите напряжение на выходе трансформатора. (Указание: использовать формулу (8) с учетом указания к задаче 4).

6.1346. Первичная обмотка понижающего трансформато­ра с коэффициентом трансформации 8 включена в сеть на­пряжением 200 В. Сопротивление вторичной обмотки 2 Ом, ток во вторичной обмотке трансформатора 3 А. Определите напряжение на зажимах вторичной обмотки. Потерями в первичной обмотке пренебречь. (Указание: использовать формулу (8) с учетом указания к задаче 4).

7.1347. Если на первичную обмотку ненагруженного трансформатора подать напряжение 220 В, то напряжение во вторичной обмотке будет равно 127 В. Активное сопро­тивление первичной обмотки равно 2 Ом, вторичной 1 Ом. Каково будет напряжение на резисторе сопротивле­нием 10 Ом, если его подключить ко вторичной обмотке? Потерями энергии в трансформаторе пренебречь.

8.1348. Первичная обмотка понижающего трансформато­ра с коэффициентом трансформации 10 включена в сеть на­пряжением 120 В. Сопротивление вторичной обмотки 1,2 Ом, ток во вторичной цепи 5 А. Определите сопротивле­ние нагрузки трансформатора и напряжение на зажимах вторичной обмотки. Потерями в первичной цепи прене­бречь. (Указание: использовать формулу (8) с учетом указания к задаче 4, выразить напряжение и найти его численное значение).

9.1349. Повышающий трансформатор создает во вторич­ной цепи ток 2 А при напряжении 2200 В. Напряжение в первичной обмотке равно 110 В. Чему равен ток в первич­ной обмотке, а также входная и выходная мощности транс­форматора, если потерь энергии в нем нет? (Указание: использовать формулу (9), принимая во внимание, что раз потерь энергии нет, то входная и выходная мощности равны, мощность P=UI).

10.1350. Ток в первичной обмотке трансформатора 0,5 А, напряжение на ее концах 220 В. Ток во вторичной обмотке 11 А, напряжение на ее концах 9,5 В, Определите коэффи­циент полезного действия трансформатора. (Указание: использовать формулу (10)).

11.1351.Понижающий трансформатор дает ток 20 А при напряжении 120 В. Первичное напряжение равно 22 000 В. Чему равны ток в первичной обмотке, а также входная и выходная мощности трансформатора, если его КПД ра­вен 90%? (Указание: использовать формулы (9) и (10)).

12.1352. Первичная обмотка понижающего трансформато­ра включена в сеть с напряжением 220 В, Напряжение на зажимах вторичной обмотки 20 В, ее сопротивление 1 Ом. Сила тока во вторичной цепи равна 2 А. Определите коэффициент трансформации и коэффициент полезного действия трансформатора. Потерями в первичной катушке пренебречь. (Указание: использовать формулу (8) с учетом указания к задаче 4).

13.1353.На первичную обмотку трансформатора подается напряжение 3500 В. Его вторичная обмотка соединена под­водящими проводами с потребителем, на входе которого на­пряжение 220 В, а потребляемая мощность 25 кВт и cosφ = l. Определите сопротивление подводящих прово­дов, если коэффициент трансформации равен 15. Чему рав­на сила тока в первичной обмотке трансформатора? (Указание: использовать формулы (3) и (8)).

 

 

Доверь свою работу ✍️ кандидату наук!
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой



Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.