Мои Конспекты
Главная | Обратная связь

...

Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Описание схемы процесса гидроочистки





Помощь в ✍️ написании работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Регуляторы и средства отображения информации 23

4.6 Нормирующие преобразователи 23

4.7 Исполнительное устройство 24

5 Описание систем контроля, регулирования, сигнализации и ПАЗ 24

5.1 Контроль и регулирование давления 24

5.2 Контроль и регистрация давления 25

5.3 Регистрация, контроль и сигнализация температуры 25

5.4 Контроль и регулирование температуры 26

5.5 Контроль, регулирование и сигнализация уровня 26

5.6 Контроль и регистрация расхода 26

5.7 Регулирование, контроль и сигнализация расхода 27

5.8 Описание системы противоаварийной защиты 27

Список использованной литературы 33

 

Общая характеристика и описание схемы процесса гидроочистки дизельного топлива

Общая характеристика процесса

Каталитическая гидроочистка дизельного топлива (ДТ) применяется для улучшения экологических и эксплуатационных свойств, для повышения термической и химической стабильности товарного моторного топлива, путем удаления сернистых, азотистых, кислородных, металлорганических соединений, а также насыщения непредельных и ароматических углеводородов. Гидроочистке, подвергают дистилляты, как прямогонные, так и вторичного происхождения: дизельная фракция, легкий газойль каталити++ческого крекинга, легкий газойль пекования. Процесс гидроочистки применяется также для облагораживания компонентов смазочных масел и парафинов.

Остаточное содержание серы в целевых продуктах невелико, например дизельное топливо – 0,005 – 0,001 % (масс.) серы; легкий газойль каталитического крекинга – 0,050 – 0,030 % (масс.) серы.

При гидроочистке получают также газ, отгон, сероводород. Газ, содержащий водород, метан, этан и незначительное количество пропана и бутана, используется как топливо непосредственно на заводе, если же в составе нефтеперерабатывающего завода есть нефтехимический комплекс, то газ, после предварительной очистке, можно использовать как сырье для нефтехимии. Отгон, образующийся при гидроочистке дизельного топлива и более тяжелого сырья и представляющий собой бензиновую фракцию с низким октановым числом, сбрасывается в автомобильный бензин или добавляется к сырью установки платформинга или риформинга. Сероводород применяется для получения серы или серной кислоты.

 

Описание схемы процесса гидроочистки

Сырьё - дизельная фракция из промпарка поступает на приём насоса Н-1 и подаётся на смешение с циркулирующим водород содержащим газом, по­даваемым компрессором ПК-1. Газосырьевая смесь нагревается в межтрубном пространстве теплообменника Т-1 и Т-2 и в печи П-1 до температуры 350°С, после чего поступает в два последовательно работающих реактора Р-1, Р-2.

В реакторах Р-1 и Р-2 на алюмокобальтмолибденовом катализаторе происходит гидрирование сернистых, азотистых и непредельных соединений, содержащихся в сырье, с образованием Н2S, NН3, а также частичный гидро­крекинг с образованием углеводородного газа и лёгких бензиновых фракций.

Реакции гидрирования протекают со значительным тепловым эффек­том, в результате чего температура на входе может повышаться на 50 - 55°С. Для снятия тепла предусмотрен подвод ВСГ с выкида компрессора ПК-1. Газо-продуктовая смесь из реактора Р-2 с температурой 403°С направляется в трубное пространство теплообменника Т-1, затем в Т-2, где нагревая газо-сырьевую смесь, охлаждается до температуры 140°С. Затем газо-продуктовая смесь охлаждает­ся в холодильнике-конденсаторе ХК-1 и водяном холодильнике Х-1 до тем­пературы 40°С и поступает в сепаратор высокого давления С-1, где происхо­дит разделение на гидрогенизат и циркулирующий ВСГ. Затем циркулирую­щий водородсодержащий газ поступает на очистку от Н2S 15% раствором моноэтаноламина (МЭА) в абсорбер К-3.

Очищенный ВСГ поступает на линию подачи ВСГ, где смешивается со свежим ВСГ. Гидрогенизат из С-1 поступает в сепаратор низкого давления С-2.

Углеводородный газ из С-2 направляется в абсорбер К-2 на очистку от Н2S 15%-ым раствором МЭА. Гидрогенизат из С-2 поступает в межтрубное пространство теплообменника Т-2 и направляется в стабилизационную ко­лонну К-1. В теплообменнике Т-3 гидрогенизат нагревается до температуры 160°С за счет тепла стабильной дизельной фракции - нижнего продукта ста­билизационной колонны К-1.

В стабилизационной колонне К-1 происходит отделение углеводород­ного газа и лёгкой бензиновой фракции (верхний продукт) от стабильной ди­зельной фракции (нижний продукт). Для подвода тепла в колонну К-1 часть нижнего продукта насосом Н-3 подаётся через печь П-2, где подогревается до температуры 300°С и далее в колонну К-1.

Пары легкого бензина и углеводородный газ с верха К-1 конденсируют­ся и охлаждаются в конденсаторе - холодильнике ХК-3 и поступа­ют в сепаратор С-3. В сепараторе С-3 при температуре 40°С и давлении 0,3 МПа. происходит разделение углеводородного газа, воды и лёгкого бензина фрак­ции. Лёгкий бензин из С-3 забирается насосом Н-4 и частично возвращается в К-1 в качестве орошения. Балансовое количество легкого бензина охлаждает­ся и выводится с установки. Насыщенный сероводородом и парами воды углеводородный газ из сепаратора С-2 направляется на очистку в абсорбер К-2.

Углеводородный газ из С-2 очищается от Н2S в абсорбере К-2 15%-ым раствором МЭА. Сверху абсорбера выходят очищенные углеводородные газы, а снизу насыщенный сероводородом раствор МЭА.

Очищенные от Н2S углеводородные газы сверху абсорбера К-2 поступают в сепаратор С-4, где отделяются от содержащихся в нем водяных паров, которые конденсируются в сепаратор С-4 и выводятся в дренаж для последующей очистки. Углеводородные газы выводятся сверху сепаратора С-4 и подогреваясь перегретым водяным паром в теплообменнике Т-4 поступает линию, для обеспечения внутризаводских нужд углеводородными газами.

ЦВСГ из С-1 очищается от Н2S в абсорбере К-3 15%-ым раствором МЭА. Сверху абсорбера выходит очищенный ЦВСГ, а снизу насыщенный сероводородом и углеводородными газами раствор МЭА.

Насыщенный сероводородом и углеводородными газами раствор МЭА снизу абсорберов К-2, К-3 собирается в общий поток и поступает в сепаратор C-5, где от раствора отделяются углеводородные газы, а сам раствор подается в отгонную часть колонны К-4

В десорбере К-4 происходит отделение Н2S от 15% раствора МЭА. Обогрев десорбера К-4 осуществляется через кипятильник Т-6. Нижний продукт - отгон десорбера К-4 - регенерированный раствор МЭА охлаждается в трубном пространстве теплообменника Т-5, далее поступает в ёмкость Е-1.

Для поддержания заданной концентрации МЭА в ёмкость Е-1 подаётся свежий МЭА. Далее из ёмкости Е-1 насосом Н-5 осуществляется подача МЭА в абсорберы К-2, К-3.

Пары воды и Н2S, уходящие с верху колонны К-4, охлаждаются и кон­денсируются в водяном холодильнике Х-5 и поступают в сепаратор С-6.

Н2S из сепаратора С-6 выводится с установки, а вода насосом Н-8 на орошение в десорбер К-4.

 

Доверь свою работу ✍️ кандидату наук!
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой



Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.