Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

ТОЧЕЧНАЯ ОЦЕНКА СЛУЧАЙНОЙ ВЕЛИЧИНЫ



 

Предположим, что генеральная совокупность является нормальным распределением. Нормальное распределение полностью определено математическим ожиданием (средним значением) и средним квадратичным отклонением. Поэтому, если по выборке можно оценить, т.е. приближенно найти, эти параметры, то будет решена одна из задач математической статистики – определение параметров большого массива по исследованию его части.

Параметры генеральной совокупности можно указать по параметрам выборки с учетом ее объема n.

Если считать, что статистическое распределение является выборкой из некоторой генеральной совокупности, при этом , то можно заключить, что для этой генеральной совокупности приближенно:

ИНТЕРВАЛЬНАЯ ОЦЕНКА. ДОВЕРИТЕЛЬНЫЙ ИНТЕРВАЛ. ДОВЕРИТЕЛЬНАЯ ВЕРОЯТНОСТЬ.

,

При достаточно большом объеме выборки можно сделать вполне надежные заключения о параметрах генеральной совокупности. Однако на практике часто имеют дело с выборками небольшого объема (n<30). При небольшом объеме выборки пользуются интервальными оценками. В этом случае указывается интервал (доверительный интервал).

Доверительный интервал – интервал, в котором с заданной доверительной вероятностью находится истинное значение случайной величины (среднее значение генеральной совокупности).

Доверительная вероятность – вероятность, с которой в заданном интервале (доверительном интервале) находится истинное значение случайной величины (среднее значение генеральной совокупности). Обычно в медико-биологических исследованиях доверительную вероятность принимают равной 0,95.

Доверительный интервал математически записывают так:

, или

, где

- коэффициент Стьюдента (величина табличная, размерности не имеет),

a - доверительная вероятность,

n – объем выборки;

m – ошибка среднего.

Чтобы определить доверительный интервал, необходимо:

1. Вычислить среднее значение выборки ;

2. Вычислить дисперсию для выборки ;

3. Вычислить исправленную выборочную дисперсию:

4. Вычислить ошибку среднего .




Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.