Мои Конспекты
Главная | Обратная связь

...

Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Теоретичні відомості.





Помощь в ✍️ написании работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Диференціальне рівняння називається звичайним, якщо невідома функція є функцією однієї змінної, і диференціальним рівнянням в частинних похідних, якщо невідома функція є функцією багатьох змінних.

Таким чином, звичайним диференціальним рівнянням називають рівняння виду:

, (38)

де x – незалежна змінна; y = y(x) – невідома функція; ¾ відповідно похідні цієї функції порядку 1, 2,…,n.

Розв’язком диференціального рівняння (38) на деякому інтервалі (a;b) називається диференційована на цьому інтервалі функція y = y(x), яка при підстановці в рівняння (38) перетворює його в тотожність по x на (a;b).

Кожне диференціальне рівняння має безліч розв’язків . Щоб знайти частинний розв’язок рівняння необхідно, задати додаткові умови. Залежно від способу задання додаткових умов розрізняють два типи задач: задача Коші і крайова задача.

Якщо додаткові умови задаються в одній точці, то така задача називається задачею Коші, а ці умови ¾ початковими умовами.

Якщо додаткові умови задаються більш ніж в одній точці, то така задача називається крайовою задачею, а умови ¾ крайовими або граничними.

В лабораторній роботі набудемо навичок рішення задачі Коші.

Задача Коші полягає в тому, щоб знайти розв’язок y(x) звичайного диференціального рівняння першого порядку

, (39)

який задовольняє початкову умову

. (40)

З погляду геометрії розв’язати задачу Коші ¾ це означає виділити з множини інтегральних кривих (розв’язків) ту, яка проходить через задану точку .

Для розв’язання задачі Коші широко використовують чисельні методи, які дають наближений розв’язок диференціального рівняння у вигляді таблиці значень. В основі цих методів лежить покроковий принцип визначення шуканої функції. Найпоширенішими є методи Ейлера та Рунге – Кутта.

Метод Ейлера . При пошуку чисельного розв’язку задачі (39),(40) відрізок інтегрування [x0, b] розбивають на n рівних частин. Довжина кожної із утворених частин дорівнює . Точки розбиття будуть: , якщо відоме значення в точці .

Наближене значення в точці обчислюється за формулою:

(41)

Оцінка похибки здійснюється за принципом Рунге (правило подвоєння):

, (42)

де – значення розв’язку в точці , отримане за методом Ейлера з кроком h, - значення розв’язку в тій же точці x, але отримане з кроком рівним 2h.

Метод Рунге – Кутта. Метод Рунге – Кутта четвертого порядку дає рішення задачі Коші більш точне ніж в попередньому методі.

Відрізок інтегрування [x0, b] розбивається на n рівних частин. Довжина кожної із утворених частин дорівнює . Точки розбиття будуть: , якщо відоме значення в точці .

Наближене значення в точці обчислюється за формулами:

, (43)

де

Оцінка похибки здійснюється за принципом Рунге (правило подвоєння):

, (44)

де – значення розв’язку в точці , отримане за методом Рунге – Кутта з кроком h, - значення розв’язку в тій же точці x, але отримане з кроком рівним 2h.

 

Доверь свою работу ✍️ кандидату наук!
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой



Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.