Мои Конспекты
Главная | Обратная связь

...

Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Нестандартные ловушки углеводородов





Помощь в ✍️ написании работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

В первой половине XX века в США неуклонно и целенаправленно стала изменяться методика нефтегазопоисковых работ: случайное бурение быстро сменилось геологической съёмкой, последняя дополнялась, а затем была вытеснена колонковым бурением и сейсморазведкой. С начала 50-х годов доминирующим методом стала «подземная геология», временами, дополняющаяся сейсморазведкой, и хотя в США сейсморазведка значительно усовершенствовалась (цифровые машины, компьютеризация, трехмерная сейсморазведка) она, в отличие от СССР, после 50-х годов так и осталась вспомогательным методом обоснования заложения поисковых скважин [23, 24].

Осталось только преодолеть инерцию, сложившейся в прошлом стратегии нефтегазопоисковых работ, в которой всегда первоочередными остаются антиклинальные объекты, вплоть до мельчайших, а главным методом поисков остаётся сейсморазведка.

Помимо классических неантиклинальных ловушек, литологически или стратиграфически ограниченных, давно уже обнаружены и другие типы нетрадиционных ловушек, в которых «антиклинальный эффект» либо отсутствует, либо подавлен другими эффектами.

В 1992 г. во ВНИГРИ были поставлены НИР, в которых поднимался вопрос о ловушках нефти и газа не только неантиклинального типа, но и вообще «о ловушках», то-есть, о тех вместилищах нефти и газа, которые никак не могут быть связаны с «традиционными и привычными» антиклиналями, а, возможно, и вообще не со структурными формами в любом их выражении. Рассматривалось влияние на формирование залежей УВ как тектонических, так и физико-химических процессов, протекающих в недрах земной коры.

В.В.Забалуев в 1997 году пытался обосновать, что не менее 15-20% не открытых общих ресурсов УВ Русской платформы сосредоточено в неантиклинальных залежах (по аналогии с другими древними платформами мира, где, причем, более половины таких залежей обнаружено с помощью несейсмических методов и случайного бурения). Эти залежи не открыты, потому что на Русской платформе, до недавнего времени их и не искали. В последние десятилетия, наконец-то, появились геологи, настойчиво рекомендующие поиск неантиклинальнальных залежей именно на Русской платформе.

* Е.Б.Грунис детально обосновывает различные типы неантиклинальных ловушек на востоке Русской платформы. Среди них: а) биогермы верхнего девона и нижнего карбона на бортах Камско-Кинельской системы грабенообразных прогибов; б) терригенные и карбонатные горизонты в ловушках облекания внутри турне, бобриковского и тульского горизонтов; в) ловушки, связанные с эрозионными врезами в визе и верейском горизонте (склоны Татарского свода и восточный борт Мелекесской впадины); зоны выклинивания и фациального замещения в различных горизонтах девона и нижнего карбона на склонах Татарского свода, Мелекесской впадины и Восточно-Оренбургского поднятия [17].

* В.В.Забалуев, ссылаясь на разрозненные первоисточники, определяет возможные неантиклинальные объекты Русской платформы: руковообразные залежи в девонских и нижнекаменноугольных отложениях Башкирского свода, в Кыновском своде - кыновском и уфимском горизонтах Татарского свода и другие (Афанасьев и др., 1987, Ларин и др., 1993; Антонов и др., 1998; Шилин, 1998) [24].

* Е.А.Леонова обосновала существование зон выклинивания коллекторов в девонских отложениях Оренбургской области и в качестве первоочередных объектов предлагает их поиски на севере и западе области [36].

* И.А.Денкевич с соавторами также считает первоочередным поиск неантиклинальных ловушек (и залежей УВ) в девонских отложениях Соль-Илецкого свода [20].

* А.Г.Шашель в своей кандидатской диссертации подчеркивает, что прекращение заметных открытий и исчерпание фонда наиболее перспективных структурных ловушек в Самарской области делает неизбежным переход к поискам сложно построенных тектонически и литологически экранированных ловушек. И хотя автор отдает предпочтение поиску тектонически ограниченных объектов на бортах девонских грабенообразных прогибов, объектами второй очереди все же названы зоны регионального выклиниванивания и фациального замещения в терригенных девонских и нижнекаменноугольных отложениях [56].

* В.Б.Арчегов (1993-2002) подчеркивал, что на границе разделов разных блоков земной коры, то есть в межблоковых зонах – структурах особого строения и особой проницаемости и продуктивности полезных ископаемых, в данном случае нефтегазопродуктивности, возможно обнаружение ловушек совершенно нового типа, накопление УВ в которых происходило в новейший этап тектонического развития (преимущественно в антропогене) при взаимном (комплексном) участии тектонических, литологических, геохимичеких и гидрогеологических показателей нефтегазоносносности - над которыми давлели и давлеют физико-химические процессы, протекающие в определенных «давление – температура» условиях нефтегазоносных комплексах [2, 4, 5 ].

* А.А.Отмас подчеркивает особенности блоковой делимости территории и акватории Балтийской НГО и связанную с этим методику поиска новых ловушек, контролирующих залежи нефти [42].

Необходим дальнейший поиск новых ти­пов ЗНГН и в их пределах новых типов ловушек на основе комплексного изучения блокового строения ОПБ [3, 5].

А.А.Граусман (1997) обратил внимание на нестандартные условия формирования УВ-залежей, в частности, на резко различные условия формирования УВ-залежей на территориях распространения многолетнемерзлых пород, разделив таковые на «морозные» и «мерзлые». «Морозные» породы – породы с высокой минерализацией подземных вод, остающиеся, несмотря на отрицательные температуры, в жидком состоянии; общее охлаждение недр в хорошо изолированных горизонтах (в частности, в подсолевых вендских отложениях Непско-Ботуобинской антеклизы) из-за сжатия флюидов приводит к формированию аномально низких пластовых давлений (АНПД), дегазации нефти, перетокам флюидов из горизонта в горизонт, в том числе, и сверху вниз. «Мерзлые» породы – с низкой минерализацией подземных вод – образуют монолитную мерзлую плиту, всем своим весом давящую на нижележащие не мерзлые и потому пластичные породы. Возникающее таким образом добавочное геостатическое давление в верхах осадочного чехла (мезозой Алдано-Вилюйского прогиба – В.Б.Арчегов, 1988) создает выжимающий, «криогенный» напор на нижележащие толщи: в высокопроницаемых породах (мел и юра), где подземные воды легко отжимаются по латерали, возникают АНПД, а в пластах с затрудненным водообменном (низы триаса и перми – АВПД). Предложенная А.А.Граусманом схема удовлетворительно укладывается в соответствующих отложениях Западной Якутии [23].

Л.Д.Дучков с соавторами (1997) создали «Геотермический Атлас Сибири». Тепловой поток, измеряемый в мвт/м2, позволяет выявлять некоторые особенности геологического строения региона и производить районирование, косвенно влияющее на нефтегазоносность. Так, например, в Прибайкалье отчетливо видны Жигаловская аномалия северо-восточного простирания (более 50 мвт/ м2 на фоне 30-40 мвт/м2; напомним, что к ней приурочено уникальное по реальным запасам Ковыктинское газоконденсатно-гелиевое месторождение). Также отчетливо выделяется поперечная к простиранию Непско-Ботуобинской антеклизы тепловая аномалия, совпадающая с поясом разрывов, к которым приурочены Талаканское и Верхнечонское НГКМ. И, в частности, с Байкальским рифтом совпадает высококонтрастная тепловая аномалия (более 200 мвт/м2). На карте температур на глубине 5 км Жигаловской аномалии соответствует температура 1000С, а Байкальскому рифту – 2000С. Тепловая съемка позволяет также определять толщину зоны отрицательных температур; в частности, в Тунгусской синеклизе она достигает 200 м, тогда как на Анабарской антеклизе и в Приверхоянской краевой системе толщина «мерзлых» и «морозных» пород колеблется от 600 до 1657 м.

Ю.Я.Большаков с соавторами (1998) пропагандирует нетрадиционное объяснение планового несоответствия залежей нефти и газа с антиклинальными структурами на севере Западной Сибири в юрских и нижнемеловых отложениях. На таких гигантах-месторождениях как Уренгой, Ямбург, Новый порт и других «смещение залежей относительно сводов антиклиналей настолько значительно, что разность отметок ГВК или ВНК достигает сотен метров» (Большаков и др., 1998). Авторы объясняют это капиллярным экранированием залежей по латерали; в гидрофильной поровой среде капиллярное давление препятствует заполнению УВ мелкопористых разностей пород; напротив, в гидрофобных коллекторах УВ оттесняются в мелкопоровые полости, а пластовая вода занимает крупнопоровые емкости [6]. Приводимые авторами соответствующие расчеты, в частности, по Южному нефтяному месторождению, удовлетворительно объясняют наблюдаемое распределение газа, нефти, воды.

Прямое гидродинамическое экранирование далеко не редкость в нефтегазовой геологии. Ярчайшим примером является гигантское газовое месторождение Бланко-Месаверде (начальные запасы – более 425 млрд. м3) во впадине Сан-Хуан (Скалистые Горы, США). Оно приурочено к наиболее погруженной части впадины, где меловые песчаники до глубины около 2000 м газонасыщены и экранируются, видимо, напором подземных вод, поступающих во впадину из окружающих ее горных сооружений; при этом, само газовое скопление располагается гипсометрически выше абсолютной нулевой отметки (!) [35, 62].

Сходная картина наблюдается и в осевой части Западно-Канадского краевого прогиба – здесь на протяжении сотен километров наблюдается на относительно небольших глубинах (сотни метров) в меловых отложениях повсеместная, газонасыщенность песчаников, удерживающаяся также гидродинамическими силами. Оценка ресурсов газа этой синклинальной зоны достигает первых триллионов кубометров.

Не исключено существование подобных залежей и в недрах Вилюйской синеклизы и Предверхоянского прогиба, иначе говоря, Алдано-Вилюйского прогиба Приверхоянской краевой системы. Надежными признаками нефтегазоносности могут оказаться УВ-гидраты в донных осадков морей. Они обнаруживаются даже в тропических морях (Bagirov, Lercha, 1997) [64].

Так, в донных осадках Мексиканского залива гидраты обнаружены на глубине моря 2200 м; установлено, что добавка этана к метану снижает необходимое давление и повышает температуру гидратообразования – например, 10% этана стабилизирует гидрат на глубине 60 м при температуре 60С, тогда как чистый метан требует глубины более 400 м[35, 62].

При изменении давлений и температур, в частности, из-за подводных оползней (турбидиты), гидраты разрушаются, выделяя огромную энергию (возникающая температура – 5700С) и могут образовывать грязевые диапиры. Они-то и являются надежным признаком гидрато- и газоносности донных и поддонных осадков; учет и выявление таких диапиров помогает также избежать всевозможных осложнений при бурении скважин (особенно нефтяного профиля) [23, 35, 62].

5.4. Морфологические типы резервуаров

Резервуар подземный – термин свободного пользования, под которым обычно понимается: общее пустотное пространство пород-коллекторов …; пустотное пространство коллектора в пределах ловушки нефти и газа; совокупность пластов коллектора и покрышки в пределах НГБ [47].

Многообразие морфологических и генетических типов ловушек предопределяет и обилие типов залежей нефти и газа.

В зависимости от строения коллектора различают залежи нефти и газа пластовые (неполнопластовые) и массивные. Выделяются залежи структурно-литологические, антиклинальные литологически ограниченные, структурно-стратиграфические (антиклинально-стратиграфические под несогласием или антиклинально-стратиграфические над несогласием), антиклинально-дизъюнктивные, антиклинальные с дизъюнктивным ограничением, водоплавающие (залежь нефти и газа антиклинальная), гидродинамически экранированные, дизъюнктивно экранированные, литологические (литологически экранированные и литологически замкнутые), гравитационные, самозапечатанные, стратиграфические и другие [47].

По структурно-морфологическим признакам залежи нефти и газа подразделяются на классы: I – Антиклинальный (структурный – неудачный синоним), II- Рифогенный, III- Литологический, IV– Стратиграфический. Внутри классов выделяются группы, подгруппы и виды (рис. 3)[53].

Класс I. Антиклинальный

Доверь свою работу ✍️ кандидату наук!
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой



Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.