Мои Конспекты
Главная | Обратная связь

...

Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Истечение жидкости из отверстий и насадков и определение коэффициентов скорости истечения





Помощь в ✍️ написании работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Рассмотрим истечение идеальной несжимаемой жидкости из небольшого отверстия в широком открытом сосуде.

Выделим мысленно в жидкости трубку тока, сечениями которой являются открытая поверхность жидкости S1 и сечение струи при выходе из отверстия S2 (если не принять специальных мер, то сечение струи будет меньше отверстия). Для всех точек каждого из этих сечений скорость жидкости v и высоту h над некоторым исходным уровнем можно считать одинаковыми. Поэтому к данным сечениям можно применить теорему Бернулли. Давления р1 и р2 в обоих сечениях одинаковы и равны атмосферному. Скоростью v1 перемещения открытой поверхности жидкости ввиду ее малости можно пренебречь. Поэтому уравнение (7) в данном случае упрощается следующим образом:

 

 

где v – скорость жидкости в сечении S2 (скорость истечения из отверстия). Сократив на р, можно написать, что где h = h1 – h2 – высота открытой поверхности над отверстием.

 

(8)

 

Формула (8) называется формулой Торричелли. Из нее следует, что скорость истечения жидкости из отверстия, находящегося на глубине h под открытой поверхностью жидкости, совпадет со скоростью, которую приобретает любое тело, падая с высоты h (в случае, если сопротивлением воздуха можно пренебречь). Этот результат получен в предположении, что жидкость идеальна. Для реальных жидкостей скорость истечения будет меньше, причем тем сильнее отличается от значения, определяемого формулой Торричелли, чем больше внутреннее трение в жидкости. Например, глицерин будет вытекать из сосуда медленнее, чем вода.

Рассмотрим различные случаи истечения жидкости из резервуаров, баков, котлов через отверстия и насадки (коротки трубки различной формы) в атмосферу или пространство, заполненное газом или той же жидкость. В процессе такого истечения запас потенциальной энергии, которым обладает жидкость, находящаяся в резервуаре, превращается в кинетическую энергию свободной струи.

Основным вопросом, который интересует в данном случае, является определение скорости истечения и расхода жидкости для различных форм отверстий и насадок.

1. Истечение через малые отверстия в тонкой стенке при постоянном напоре

Рассмотрим большой резервуар с жидкостью под давлением Р0, имеющий малое круглое отверстие в стенке на достаточно большой глубине Н0 от свободной поверхности.

Жидкость вытекает в воздушное пространство с давлением Р1. Пусть отверстие имеет форму, показанную на рис. 8, а, т.е. выполнено в виде сверления в тонкой стенке без обработки входной кромки или имеет форму, показанную на рис. 8, б, т.е. выполнено в толстой стенке, но с заострением входной кромки с внешней стороны. Струя, отрываясь от кромки отверстия, несколько сжимается. Такое сжатие обусловлено движением жидкости от различных направлений, в том числе и от радиального движения по стенке, к осевому движению в струе.

Степень сжатия оценивается коэффициентом сжатия.

 

(9)

 

где Sс и Sо – площади поперечного сечения струи и отверстия соответственно; dс и dо – диаметры струи и отверстия соответственно.

Скорость истечения жидкости через отверстие такое отверстие

 

(10)

 

где Н – напор жидкости, определяется как

 

(11)

 

ц – коэффициент скорости

 

(12)

 

где б – коэффициент Кориолиса; ж – коэффициент сопротивления отверстия.

 

Доверь свою работу ✍️ кандидату наук!
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой



Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.