Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Таким образом, в цикле Kapно сумма приведенных теплот равна нулю.



Рис. 3.8

Рассмотрим далее произвольный обратимый цикл. Его можно представить как совокупность весьма большого числа элементарных циклов Карно, состоящих каждый из двух адиабат и двух бесконечно малых изотерм, как показано на рис. 3.8. По каждой из изотерм на участке 1-2 происходит подвод весьма малого (элементарного) количества теплоты при соответствующей температуре . А на участке 2-1 - отвод теплоты при температуре .Осуществление такого произвольного обратимого цикла потребует наличия большого количества теплоотдатчиков и теплоприемников с различными температурами. Видно, что рассматриваемая совокупность элементарных циклов Карно (при увеличении их числа до бесконечности) эквивалентна исходному произвольному циклу. Действительно, суммарная площадь всех таких циклов Карно равна площади данного цикла. Следовательно, эквивалентная этой площади работа данного цикла и работа совокупности элементарных циклов Карно будут также одинаковы. Суммарное количество подведенной теплоты будет равно и при устремлении числа элементарных циклов к бесконечности станет точно равным подведенному количеству теплоты в данном цикле. То же можно сказать и об отведенной теплоте .

Для каждого из этих элементарных циклов Карно сумма приведенных теплот равна нулю, т.е.

.

Тогда, просуммировав такие равенства, записанные для каждого из этих циклов Карно, получим

,

где n - число таких циклов Карно, или (при n ® ¥)

,

то есть , (3.7)

где символ обозначает интеграл, взятый по всему замкнутому контуру рассматриваемого цикла.

Таким образом, в произвольном обратимом цикле интегральная сумма элементарных приведенных теплот равна нулю.

Рассмотрим теперь необратимые циклы. Во всяком необратимом цикле, осуществляемом с тем же теплоотдатчиком (с температурой Т1) и тем же теплоприемником (с температурой Т2), что и цикл Карно, термический КПД (вследствие неравновесности процессов и диссипации энергии) будет меньше, чем у цикла Карно:

или откуда , т.е. .

Следовательно, в произвольном необратимом цикле сумма приведенных теплот отрицательна.

Тогда, повторяя вывод, приведенный выше для произвольного обратимого цикла, можно показать, что для произвольного необратимого цикла

, (3.8)

т.е. в произвольном необратимом цикле интегральная сумма элементарных приведенных теплот отрицательна.

Объединяя формулы (3.7) и (3.8), в общем случае будем иметь

, (3.9)

где знак равенства относится к обратимым циклам, а знак неравенства - к необратимым. Формула (3.9) называется неравенством Клаузиуса.




Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.