В зависимости от способа формирования и статистических свойств ортогональные кодовые последовательности разделяются на собственно ортогональные и квазиортогональные. Отличительный признак последовательности – коэффициент взаимной корреляции pij, который в общем случае изменяется от -1 до +1.
В теории сигналов доказано, что предельно достижимое значение коэффициента взаимной корреляции определяется из условия
Минимальное значение ВКФ обеспечивает коды, у которых коэффициенты корреляции для любых пар последовательностей являются отрицательными (трансортогональные коды). Коэффициент взаимной корреляции ортогональных последовательностей, по определению, равен нулю, т.е. о?ij=0. При больших значениях N различием между коэффициентами корреляции ортогональных и трансортогональных кодов практически можно пренебречь.
Существует несколько способов генерации ортогональных кодов. Наиболее распространенный – с помощью последовательностей Уолша длиной 2n, которые образуются на основе строк матрицы Адамара
Принцип формирования этой матрицы достаточно прост; его поясняет рис. 2. Исходным является сигнал вида H1={1}. Подставляя его в матрицу H2n, получаем новую матрицу большего размера:
Многократное повторение процедуры позволяет сформировать матрицу любого размера, для которой характерна взаимная ортогональность всех строк и столбцов.
Такой способ формирования сигналов реализован в стандарте IS-95, где длина последовательностей Уолша выбрана равной 64. Заметим, что различие между строками матрицы Адамара и последовательностями Уолша состоит лишь в том, что в последних используются униполяные сигналы вида {1,0}.
На примере матрицы Адамара легко проиллюстрировать и принцип построения трансортогональных кодов. Так, можно убедиться, что если из матрицы вычеркнуть первый столбец, состоящий из одних единиц, то ортогональные коды Уолша трансформируются в трансортогональные, у которых для любых двух последовательностей число несовпадений символов превышает число совпадений ровно на единицу, т.е. о?ij= -1/(N-1).
Другая важная разновидность ортогональных кодов – биортогональный код, который формируется из ортогонального кода и его инверсии. Главное достоинство биортогональных кодов по сравнению с ортогональными – возможность передачи сигнала во вдвое меньшей полосе частот. Скажем, биортогональный блочный код (32,6), используемый в WCDMA, позволяет передавать сигнал транспортного формата TFI.
Отметим, что ортогональным кодам присущи два принципиальных недостатка.
1. Максимальное число возможных кодов ограничено их длиной (в стандарте IS-95 число кодов равно 64), а соответственно, они имеют ограниченное адресное пространство.
Для расширения ансамбля сигналов наряду с ортогональными используются квазиортогональные последовательности. Так, в проекте стандарта cdma2000 предложен метод генерации квазиортогональных кодов путем умножения последовательностей Уолша на специальную маскирующую функцию. Этот метод позволяет с помощью одной такой функции получить набор квазиортогональных последовательностей Quasi-Orthogonal Function Set (QOFS). С помощью m маскирующих функций и ансамбля кодов Уолша длиной 2n можно создать (m+1) 2n QOF-последовательностей.
2. Еще один недостаток ортогональных кодов (не исключение – и применяемые в стандарте IS-95) заключается в том, что функция взаимной корреляции равна нулю лишь «в точке», т.е. при отсутствии временного сдвига между кодами. Поэтому такие сигналы используются лишь в синхронных системах и преимущественно в прямых каналах (от базовой станции к абоненту).
Возможность адаптации системы CDMA к различным скоростям передачи обеспечивается за счет использования специальных ортогональных последовательностей с переменным коэффициентом расширения спектра (OVSF, Orthogonal Variable Spreading Factor), называемых кодами переменной длины. При передаче CDMA-сигнала, который создавался с помощью такой последовательности, чиповая скорость остается постоянной, а информационная скорость изменяется кратно двум. В стандартах 3-го поколения предлагается использовать в качестве OVSF-кодов ортогональные коды Голда с кратными скоростями передачи (multirate). Принцип их образования достаточно прост; его поясняет рис. 3, где приведено кодовое дерево, позволяющее строить коды разной длины.
Кодовое дерево для генерации OVS-кодов (SF – коэффициент расширения)
Каждый уровень кодового дерева определяет длину кодовых слов (коэффициент расширения спектра, SF), причем на каждом последующем уровне возможное число кодов удваивается. Так, если на уровне 2 может быть образовано только два кода (SF=2), то на уровне 3 генерируются уже четыре кодовых слова (SF=4) и т.д. Полное кодовое дерево содержит восемь уровней, что соответствует коэффициенту SF=256 (на рисунке показаны лишь три нижних уровня).
Таким образом, ансамбль OVSF-кодов не является фиксированным: он зависит от коэффициента расширения SF, т.е. фактически – от скорости канала.
Следует отметить, что не все комбинации кодового дерева могут быть одновременно реализованы в одной и той же соте CDMA-системы. Главное условие выбора комбинации – недопустимость нарушения их ортогональности.