Мои Конспекты
Главная | Обратная связь

...

Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Карбамидные (мочевино-формальдегидные) смолы





Помощь в ✍️ написании работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Карбамидные (мочевино-формальдегидные) смолы – получаются при реакции конденсации мочевины (NH2)2CO с формальдегидом CH2 =O в присутствии щелочей:

Структурная формула смолы:

Это полярные высокомолекулярные соединения. В зависимости от условий мочевино–формальдегидные смолы могут быть водорастворимые и водонерастворимые. Отличаются термореактивностью и способностью переходить при нагревании в твердое, неплавкое и нерастворимое состояние. Подобно резолам из них можно получать изделия подобные бакелитовым смолам.

На основе мочевино – формальдегидных смол получают карбамидные пластмассы – аминопласты, из которых изготовляют:

· пресованные композиции;

· литые пластмассы;

· слоистые пластмассы.

Прессовочные порошки аминопластов представляют собой композиции из мочевино–формальдегидной смолы, целлюлозы, красителей и смазочного вещества, прессующихся в нагретых пресс–формах с образованием твердых изделий.

Из карбамидных смол с минеральными наполнителями получают искростойкие пластмассы, применяемые в дугогасильных камерах низковольтных и высоковольтных выключающих устройств.

Из мочевино–формальдегидной смолы изготовляют прозрачные шкалы и органические стекла.

Существуют:

· меламино-формальдегидные смолы;

· анилино-формальдегидные смолы;

· полиформальдегидные смолы;

· полиамидные смолы и т. п.

Анилино–формальдегидные смолы – по структуре аналогичны феноло–формальдегидным, но фенол заменен на анилин и в структуре вместоОН групп присутствует NH, дающая меньший дипольный момент и меньшую гидрофильность.

Структурная формула:

Эти смолы менее хрупки, чем бакелитовые, обладают высокой ударной вязкостью, поэтому можно прессовать без наполнителя, что и снижает гигроскопичность.

От соотношения компонентов могут быть термопластичными и термореактивными. Эти смолы не имеют в своем составе кислорода, поэтому при прессовании не происходит конденсации с выделением Н2О, как у термореактивных смол – феноло-формальдегидных форм, что положительно сказывается на их диэлектрических свойствах. Занимают промежуточное положение между термопластичными смолами типановолака и термореактивными смолами типа резола. Резолу они уступают в нагревостойкости, в противоположность новолачным смолам не плавятся, а только размягчаются. Они щелочестойки.

Полиформальдегид -твердый термопластичный слабополярный полимер линейной структуры, получаемый полимеризацией газообразного формальдегида при отсутствии воды

Строение молекул:

…- СН2 – О - СН2 – О - СН2 – О - …

Имеет высокую степень кристалличности (≈ 75%), что обуславливает жесткость и высокую механическую прочность. Механические свойства мало зависят от температуры в пределах от 20 до 120º и влажности. Температура размягчения равна 170 ºС, Температура плавления равна 180 ºС. Применяется для изготовления электроизоляционных деталей с высокой механической прочностью.

Углеродные полимерные материалы:

Пиролитический углерод (пироуглерод) — это углеродные пленки, образующиеся на нагретых поверхностях по причине термического нарушения целостности вещества. Этот класс материалов, который отличается структурой и свойствами, объединенных принципом получения.

Получение пироуглерода происходит путем кристаллизации из газовой фазы на гладкой твердой поверхности. Изначально происходит образование «зародышей» на поверхности и их рост, в процессе которого атомы газообразного углерода взаимодействуют с углеродом «зародышей», в результате чего образуется твердая структура. Рост твердой структуры происходит в виде конуса, медленно расширяясь, основания конусов заполняют всю поверхность образования «зародышей», превращаясь в цилиндры. Внутри слои углеродных атомов образуют графитоподобную структуру. Существуют два типа пироуглерода, структура и свойства которых определяются температурами образования: низкотемпературный (800—1100°С) и высокотемпературный (1400—2200°С).

Пироуглерод схож по свойствам с углеродным волокном характеризуется некоторыми физико-механическими особенностями:

— Стойкость к эрозии и воздействию агрессивных сред.

— Непроницаемость для жидкостей или газов.

Пироуглерод применяется для получения композиционных материалов. Углеродная матрица в композитных материалах выполняет функцию передачи усилий на волокна, изоляции волокон друг от друга и от внешней среды. Область применения: объемное уплотнение графитовой теплообменной аппаратуры, электроды для химического спектрального анализа, материалы для работы в коррозионных жидких средах, высокотемпературные нагреватели, подвижные межпозвонковые имплантаты.

Стеклоуглерод - углеродный материал, отличающийся высокой прочностью, и практически газонепроницаемый. Кроме того, он химически инертен, особенно в восстановительной атмосфере. Стеклоуглерод хрупок, обладает почти бездефектной внешней поверхностью, чем напоминает неорганическое стекло. Стеклоуглерод - продукт термической переработки сетчатых полимеров, в первую очередь, фенолформальдегидной смолы, а также целлюлозы. Это вещества, структура которых не содержит графитоподобных элементов, но включает большое количество связей С-О и изолированных циклов. Первой стадией получения изделия из стеклоуглерода является формование, а затем отверждение материала при t≤200°C, не связанное с его деструкцией. В ходе дальнейших превращений форма изделия практически не меняется. При термодеструкции, например, отвержденной фенолформальдегидной смолы происходят реакции дегидратации с замыканием циклов и значительным снижением содержания кислорода в материале при 300-400°С

Углеродное волокно — материал, состоящий из тонких нитей диаметром от 5 до 15 микрон, образованных преимущественно атомами углерода. Атомы углерода объединены в микроскопические кристаллы, выровненные параллельно друг другу. Выравнивание кристаллов придает волокну большую прочность на растяжение. Углеродные волокна характеризуются высокой силой натяжения, низким удельным весом, низким коэффициентом температурного расширения и химической инертностью.

УВ обычно получают термической обработкой химических или природных органических волокон, при которой в материале волокна остаются главным образом атомы углерода. Температурная обработка состоит из нескольких этапов. Первый из них представляет собой окисление исходного (полиакрилонитрильного, вискозного) волокна на воздухе при температуре 250 °C в течение 24 часов. В результате окисления образуются лестничные структуры, представленные на рис. 1. После окисления следует стадия карбонизации — нагрева волокна в среде азота или аргона при температурах от 800 до 1500 °C. В результате карбонизации происходит образование графитоподобных структур. Процесс термической обработки заканчивается графитизацией при температуре 1600-3000 °C, которая также проходит в инертной среде. В результате графитизации количество углерода в волокне доводится до 99 %. Помимо обычных органических волокон (чаще всего вискозных и полиакрилонитрильных), для получения УВ могут быть использованы специальные волокна из фенольных смол, лигнина, каменноугольных и нефтяных пеков.

УВ имеют исключительно высокую теплостойкость: при тепловом воздействии вплоть до 1600—2000 °С в отсутствии кислорода механические показатели волокна не изменяются. Это предопределяет возможность применения УВ в качестве тепловых экранов и теплоизоляционного материала в высокотемпературной технике. На основе УВ изготавливают углерод-углеродные композиты, которые отличаются высокой абляционной стойкостью. УВ устойчивы к агрессивным химическим средам, однако окисляются при нагревании в присутствии кислорода. Их предельная температура эксплуатации в воздушной среде составляет 300—350°С.

Активацией УВ получают материалы с большой активной поверхностью (300—1500 м²/г), являющиеся прекрасными сорбентами. Нанесение на волокно катализаторов позволяет создавать каталитические системы с развитой поверхностью.

УВ применяют для армирования композиционных, теплозащитных, хемостойких в качестве наполнителей в различных видах углепластиков.

УГЛЕГРАФИТОВЫЕ МАТЕРИАЛЫ, техн. материалы на основе прир. или синтетич. графита. Характеризуются высокой жаростойкостью (до 3700 оС при давлении до 20 ГПа), высокой прочностью при повыш. т-рах, окислит, стойкостью навоздухе, в паро-воздушной и агрессивных неокислит. средах; нек-рые углеграфитовые материалы обладают также высоким (до 800 ГПа) модулем упругости.

К углеграфитовым материалам обычно относятся кокс каменноугольный, кокс нефтяной, разл. виды графита, стеклоуглерод, углерод-углеродные материалы, углеродные волокна, технический углерод (сажа).

Для получения большинства углеграфитовых материалов используют в-ва с большим содержанием углерода - кам.-уг. и нефтяные пеки, полиэфирные смолы, целлюлозу, полиакрилонитрил и др. Поскольку физ.-хим. св-ва углеграфитовых материалов зависят гл. обр. от степени упорядочения в объеме материала кристаллов графита, исходное соед. подвергают термич. обработке. На первом этапе после дробления орг. соед. подвергают термич. разложению при 500-1500 0C в инертной или восстановит, среде (стадия т. наз. карбонизации). Дальнейшая обработка при 2000-2800 С приводит к образованию в материале гексагон. структуры графита (стадия графитации). Полученные таким образом заготовки углеграфитовых материалов содержат не менее 99% углерода и имеют плотн. 1,9-2,0 г/см3. Детали из них формуют прессованием, продавливанием через мундштук и др. способами.

Углеграфитовые материалы применяют в качестве конструкц., жаростойких (для оснастки и футеровки высокотемпературных электронагреват. печей) и фрикционных (в авиатехнике) материалов, для изготовления нагревателей, абсорберов, углепластиков и др.

 

Все виды углеграфитовых материалов можно разделить на следующие семь классов: электродные изделия, огнеупорные изделия, химически стойкие изделия, электроугольные изделия, антифрикционные изделия, графитированные блоки и детали для атомной энергетики, электродные массы.

УГЛЕРОД-УГЛЕРОДНЫЕ МАТЕРИАЛЫ, композиционные углеграфитовые материалы на основе углероднойматрицы и углеродных волокон. В качестве матрицы используют пироуглерод, коксовые остатки термореактивных смол, кам.-уг. или нефтяного пека, в качестве волокон-наполнителей - высокопрочныеуглеродные волокна - нити (непрерывные и рубленые), жгуты, ткани, пространств. конструкции из

волокна. Углерод-углеродные материалы по сравнению с графитом характеризуются низкой плотностью (вследствие пористости материала), высокими уд. прочностью и жесткостью, сохраняющимися неограниченно долго в инертных и восстановит, средах при т-рах до 3000 0C (при более высоких т-рах св-ва зависят от скорости сублимации углерода с пов-сти материала), а также пластич. характером разрушений.

Изделия из однонаправленно, перекрестно и хаотически армированных углерод-углеродных материалов получают карбонизацией соответствующих углепластиков при т-ре ок. 1000 0C или уплотнением пористой углеродной матрицы с помощью повторяющихся процессов пропитки волокон термореактивными смолами с послед, карбонизацией. Изделия из пространственно армированных материалов получают формированием углеродной матрицы в объеме предварительно изготовленного волокнистого каркаса путем карбонизациитермопластичных пеков под давлением или осаждением на каркас углерода, образующегося при пиролизегазообразных углеводородов. Во всех случаях избегают деформирования исходного каркаса, к-рый до сформирования углеродной матрицы не обладает конструкц. жесткостью. С учетом конкретных условий эксплуатации изделия на практике проводят сочетание разл. технол. приемов с высокотемпературной обработкой в инертной среде или вакууме, что позволяет изменять структуру материала и регулировать объем пор. Предельная т-ра обработки всегда выше т-ры эксплуатации получаемых изделий. Во избежание остаточных внутр. напряжений при конструировании и изготовлении деталей изделий используют термостойкую оснастку из графита; конструирование деталей и схем их армирования обычно проводят по высокотемпературной технологии.

Физ.-мех. и теплофиз. св-ва углерод-углеродных материалов (см. табл.) существенно зависят от т-ры обработки и вида армирования. Для однонаправленно армированных углерод-углеродных материалов с общей пористостью ~ 12% предельные значения sраст, sизг, sсдв, и sсж могут достигать соотв. 600, 1200, 25 и 800 МПа. Коэф. температуропроводности колеблется от 5,5·10-3 м2/с (в плоскости армирования) до 3·10-3 м2/с (в перпендикулярном направлении). Электропроводность, уд. теплоемкость такие же, как и у исходных углеродных материалов. В окислит, средах углерод-углеродные материалы разрушаются с выделениемоксидов углерода (на воздухе - при т-ре больше 400 0C, в водяном паре - больше 630 0C); электрохим.окисление может идти и при комнатной т-ре, причем скорость окисления зависит от плотности тока и приложенной разности потенциалов.

Доверь свою работу ✍️ кандидату наук!
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой



Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.