Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Статистические методы



Эти методы относятся к количественным. Они представляют собой совокупность количественных методов сбора, обработки и анализа массовых исходных данных и широко применяются в социально-экономических, политических науках. Они оперируют большим количеством исходной информации, что и обусловливает необходимость применения математико-статистических методов ее обработки. Что же касается географии населения, то ее изучение целиком и полностью основывается на использовании статистических материалов. Демографическая статистика представляет собой самостоятельную обширную область исследований.

Стаж применения статистических методов в науке уже довольно велик. Еще в XVIII в. в Германии сформировалась школа так называемой камеральной статистики, основная задача которой заключалась в сборе и систематизации справочной информации для нужд управления государством и подготовки чиновников.

В наши дни в зависимости от цели исследования и характера изучаемых объектов применяются как методы социально-экономической статистики, так и методы математической статистики.

Социально-экономическая статистика применяется, прежде всего, при изучении различного рода социальных, экономических и других явлений и процессов, в том числе и в территориальном, региональном разрезе.

Методы математической статистики позволяют оценивать надежность и точность выводов, сделанных на основе ограниченного статистического материала.

Все математико-статистические методы используются для решения следующих задач:

1) количественных параметров изучаемых явлений и процессов;

2) анализа природных и социально-экономических факторов территориальной дифференциации хозяйства и населения;

3) выявления статистических взаимосвязей между социально-экономическими системами;

4) изучения динамики развития территориальных систем на разных этапах их развития;

5) разработки обобщающих (интегральных) показателей функционирования геосистем;

6) разработки методов автоматизации типологии и районирования как основы для прогнозирования развития территориальных систем населения и хозяйства;

7) выявления пространственно-временных закономерностей;

8) научного обоснования устойчивого развития геосистем и использования результатов в управлении народным хозяйством.

При характеристике регионов наиболее распространен метод определения средних величин. Например, определение средней плотности населения (Р – численность населения, S – площадь), транспортной сети и т.д.

Пользование этими величинами позволяет точнее охарактеризовать специфику региона, сделать вывод о насыщенности территории теми или иными объектами. Средние величины рассчитываются при размещении и территориальной организации производства, планировке населенных мест, административно-территориальном устройстве и т.д.

Различают несколько видов средних величин: среднюю арифметическую, среднюю гармоническую, среднюю геометрическую, среднюю квадратическую и т.д.

Регионоведение, как известно, ориентировано, прежде всего, на выявление специфики, различий между территориями. Установление региональных различий осуществляется путем сопоставления природных предпосылок (природно-ресурсного потенциала) и социально-экономических факторов развития. Далеко не всегда можно сравнивать регионы по абсолютным показателям. Например, обеспеченность региона транспортом нельзя оценивать только по протяженности дорог, т.к. в данном случае важное значение имеют технико-экономические характеристики транспортных средств, влияющие на пропускную способность транспортной системы.

Количественные оценки влияния того или иного фактора на формирование и развитие регионального объекта осуществляется при помощи различных методов статистического анализа: дисперсного, корреляционного, регрессионного, корреляционно-регрессионного, ковариационного.

Статистический анализ – это собирательное понятие для ряда математических приемов обработки количественной информации, с помощью которых выявляются основные тенденции распределения показателей и степень корреляции между отдельными показателями.

Дисперсионный анализ используется для выявления влияния одного (однофакторный дисперсный анализ) или нескольких фактор-ных признаков (многофакторный анализ) на результативный признак при небольшом количестве наблюдений.

Корреляционный анализ применяется для выяснения формы и степени взаимосвязи между признаками изучаемого объекта.

Регрессионный анализ необходим для определения степени раздельного и совместного влияния факторов на результирующий признак и количественные оценки этого влияния на основе различных критериев.

Суть корреляционно-регрессионного анализа состоит в том, что из множества факторов выделяют генерирующий, а влияние второстепенных факторов искусственно затушевывается, рассматривается как случайное явление. Взаимосвязь между фактором и объектом прослеживается в виде функциональной зависимости.

Ковариационный анализ включает элементы дисперсионного и регрессионного анализа. Он используется для изучения линейной связи двух или более переменных по отдельным группам данных и оценке значимости различий между линиями регрессий внутри этих групп.

Статистические методы имеют как самостоятельное, так и сопряженное значение. Практически их используют во всех видах региональных прогнозно-аналитических исследований – социально-экономических, политических и т.д.

 




Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.