Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Моделирование



Это исследование определенных объектов путем воспроизведения их характеристик на другом объекте – модели. Последняя представляет собой аналог того или иного фрагмента действительности (вещного или мыслительного) – оригинала модели. Следовательно, при моделировании изучаемый объект (явление, процесс) заменяется другой вспомогательной или искусственной системой. Закономерности и тенденции, выявленные в процессе моделирования, затем распространяются на реальную действительность.

Существуют различные подходы к классификации и типологии моделей.

По форме представления информации модели делятся на материальные и идеальные.

К материальным относятся пространственно-подобные модели (макеты, муляжи и пр.), физически подобные модели, обладающие различными видами подобия с оригиналом (модели самолетов, судов и пр.) и математически подобные модели (аналоговые и цифровые машины).

Мысленные (идеальные) модели подразделяются на образные (зарисовки, фотографии и пр.), знаковые или символические (математические, кибернетические) и смешанные образно-знаковые модели (карты, чертежи, графики, блок-диаграммы и пр.). Различают модели дескриптивные и нормативные. Первые объясняют наблюдаемые факты или дают вероятный прогноз, вторые предполагают целенаправленную деятельность.

В зависимости от того, включают ли математико-географические модели пространственные факторы и условия или не включают, различают модели пространственные (континуальные) и точечные (дискретные).

Наиболее универсальными принципами моделирования являются подобие (аналогия), системность, выделение в изучаемом объекте главного, наиболее существенного, постоянное соотнесение модели с конкретным объектом.

С моделью можно экспериментировать, изучая различные варианты, пути воздействия. Это значит, что можно составлять много моделей одного и того же объекта.

Процесс моделирования включает в себя три элемента:

a) субъект (исследователь);

b) объект исследования;

c) модель, опосредующую отношения познающего субъекта и познаваемого объекта.

Этап построения модели предполагает наличие некоторых знаний об объекте-оригинале. Познавательные возможности модели обусловливаются тем, что модель отражает какие-либо существенные черты объекта-оригинала. Считается, что модель утрачивает свой смысл как в случае тождества с оригиналом, так и в случае чрезмерного во всех существенных отношениях отличия от оригинала.

Модели выполняют разнообразные функции:

· психологическую (возможность изучения тех объектов и явлений, которые трудно исследовать иными способами);

· собирательную (определение необходимой информации, ее сбор и систематизация);

· логическую (выявление и объяснение механизма развития конкретного явления);

· систематизирующую (рассмотрение действительности как совокупности взаимосвязанных систем);

· конструктивную (создание теорий и познание законов);

· познавательную (содействие в распространении знаний).

В настоящее время, пожалуй, нет такой области научного знания, в которой не применялся бы метод моделирования.

Моделирование территориальных систем, а регионы, безусловно, относятся к таковым, – сопряжено со многими сложностями. К последним относятся динамичность пространственных, географичес-ких процессов, изменчивость их параметров и структурных отношений. Вследствие этого они должны постоянно находится под наблюдением, которое призвано обеспечивать устойчивый поток обновляемых данных. Применение математического моделирования заострило проблему измерений и количественных сопоставлений различных аспектов и явлений социально-экономического развития, достоверности и полноты получаемых данных, их защиты от намеренных и технических искажений.

В соответствии с исследуемыми территориальными процессами и содержательной проблематикой можно выделить модели народного хозяйства в целом и его подсистем, отраслей, регионов, комплексы моделей производства, потребления, формирования и распределения доходов, трудовых ресурсов и т.д.

Большой интерес для анализа населения и хозяйства представляют диффузные модели. Первым ученым, разработавшим модель пространственной диффузии нововведений был шведский ученый Хагерстранд.

Нововведения возникают в «полюсах роста» (концепция «полюсов роста», теория «центральных мест», с которой она связана генетически, родились на Западе в 1930–1950-х гг. и в разных вариантах были положены в основу многих планов и программ региональной политики зарубежных стран) и в центрах развития, а из них передаются в окружающее их экономическое пространство. Обычно такими полюсами и центрами являются крупные города, где концентрируются квалифицированные научно-исследовательские структуры, высшие учебные заведения.

Хагерстранд в 50-х–60-х гг. XX в. исследовал восприятие различных агротехнических нововведений в Центральной Швеции и показал как они распространяются по территории. Он выделил четыре стадии диффузии: первоначальную, которая характеризуется резким контрастом между источником нововведений и периферийными районами, вторую, когда образуются новые быстро развивающиеся центры в отдаленных районах, стадию компенсации, на которой происходит одинаковое распространение нововведений во всех местах, и стадию насыщения, характеризующуюся медленным подъемом до максимума.

Одним из наиболее перспективных методов моделирования территориальных систем является имитационное моделирование. В основе этого метода теория вычислительных систем, статистика, теория вероятности, математика. Под имитационной моделью понимается модель, которая воспроизводит процесс функционирования систем в пространстве в определенный фиксированный момент времени путем отображения элементарных явлений и процессов с сохранением их логической структуры и последовательности. Это позволяет, используя исходные данные о структуре и главных свойствах территориальных систем, получать сведения о взаимосвязях между их компонентами и выявлять механизм формирования их устойчивого развития.

С 50-х–60-х гг. XX в. моделирование стало широко и активно применяться в политологии.

Проникает он и в науку о международных отношениях. Российским примером может быть работа М.А. Хрусталева «Системное моделирование международных отношений».

Особенно велика роль моделирования в изучении демографических процессов, ибо воспроизводство населения – это многосложный процесс. В демографии практически невозможен эксперимент, а исторические аналогии как средство исследования тоже чаще всего неприменимы.

Многие демографические показатели, используемые в практике демографического анализа, рассчитываются, исходя из демографических моделей. Речь идет о таких показателях, как средняя продолжительность жизни при рождении, нетто- и брутто-коэф-фициенты воспроизводства и т.д.

Демографические модели важны для практических расчетов. К примеру, модель передвижки по возрастам является основой демографического прогноза.

Сегодня в демографии широко используются математические модели населения, с помощью которых на основе фрагментарных и неполных данных, являющихся результатом непосредственного наблюдения, можно получить достаточно полное и достоверное представление о состоянии воспроизводства населения. Причем с помощью математических моделей можно получить более достоверные данные, чем с помощью статистического учета.

Преимущества метода моделирования очевидны:

1. он дает ключ к познанию многих объектов, которые не поддаются непосредственному измерению;

2. моделирование облегчает и упрощает исследование, делает его более наглядным;

3. с моделями можно экспериментировать.

Но у этого метода есть и слабые стороны. Так, в моделировании региональных систем должна находить отражение вся сложность взаимосвязанных процессов и явлений, протекающих в пространстве и времени. Вместе с тем модель должна быть максимально пригодна для практического использования, должна быть понятна тем, кто принимает решение, исходя из тех заключений, выводов, рекомендаций, прогнозов, которые делаются в результате изучения. Поиск оптимального варианта всегда приводит к разумной абстракции, к отвлечению от каких-то сторон реальных явлений и процессов. Но упрощение реальных ситуаций в сложных региональных системах таит в себе опасность получения неверных результатов. Следовательно, существует предел упрощения модели. Кроме того, всегда остаются проблемы, которые не поддаются формализации, и в этом случае математическое моделирование малоэффективно.

 




Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.