Мои Конспекты
Главная | Обратная связь


Автомобили
Астрономия
Биология
География
Дом и сад
Другие языки
Другое
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Металлургия
Механика
Образование
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Туризм
Физика
Философия
Финансы
Химия
Черчение
Экология
Экономика
Электроника

Двумя точками ( А и В ).



Рассмотрим две точки в пространстве А и В (рис. 3.1). Через эти точки можно провести прямую линию получим отрезок [BA]. Для того чтобы найти проекции этого отрезка на плоскости проекций необходимо найти проекции точек А и В и соединить их прямой. Каждая из проекций отрезка на плоскости проекций меньше самого отрезка:

[A1B1]<[BA]; [A2B2]<[BA;] [A3B3]<[BA].

а) модель   б) эпюр
Рисунок 3.1.Определение положения прямой по двум точкам

Обозначим углы между прямой и плоскостями проекций через a- с плоскостью П1, b- с плоскостью П2, g- с плоскостью П3 и тогда получим:

½А1В1½=½BA½cos a

½A2B2½=½AB½cos b

½A3B3½=½AB½cos g.

Частный случай ½A1B1½=½A2B2½=½A3B3½ при таком соотношении прямая образует с плоскостями проекций равные между собой углы »g=b=a350, при этом каждая из проекций расположена под углом 450 к соответствующим осям проекций.

Двумя плоскостями (;a )b.

Этот способ задания определяется тем что две непараллельные плоскости пересекаются в пространстве по прямой линии (этот способ подробно рассматривается в курсе элементарной геометрии).




Поиск по сайту:







©2015-2020 mykonspekts.ru Все права принадлежат авторам размещенных материалов.